ﻻ يوجد ملخص باللغة العربية
In 1944 Onsager published the formula for the partition function of the Ising model for the infinite square lattice. He was able to express the internal energy in terms of a special function, but he left the free energy as a definite integral. Seven decades later, the partition function and free energy have yet to be written in closed form, even with the aid of special functions. Here we evaluate the definite integral explicitly, using hypergeometric series. Let $beta$ denote the reciprocal temperature, $J$ the coupling and $f$ the free energy per spin. We prove that $-beta f = ln(2 cosh 2K) - kappa^2, {}_4F_3 [1,1,tfrac{3}{2},tfrac{3}{2}; 2,2,2 ; 16 kappa^2 ] $, where $_p F_q$ is the generalized hypergeometric function, $K=beta J$, and $2kappa= {rm tanh} 2K {rm sech} 2K$.
The universal critical point ratio $Q$ is exploited to determine positions of the critical Ising transition lines on the phase diagram of the Ashkin-Teller (AT) model on the square lattice. A leading-order expansion of the ratio $Q$ in the presence o
We calculate zeros of the $q$-state Potts model partition function on $m$th-iterate Sierpinski graphs, $S_m$, in the variable $q$ and in a temperature-like variable, $y$. We infer some asymptotic properties of the loci of zeros in the limit $m to inf
We provide a non-trivial test of supersymmetry in the random-field Ising model at five spatial dimensions, by means of extensive zero-temperature numerical simulations. Indeed, supersymmetry relates correlation functions in a D-dimensional disordered
We have explained in detail why the canonical partition function of Interacting Self Avoiding Walk (ISAW), is exactly equivalent to the configurational average of the weights associated with growth walks, such as the Interacting Growth Walk (IGW), if
We have dramatically extended the zero field susceptibility series at both high and low temperature of the Ising model on the triangular and honeycomb lattices, and used these data and newly available further terms for the square lattice to calculate