ﻻ يوجد ملخص باللغة العربية
We find an exact general solution to the three-dimensional (3D) Ising model via an exact self-consistency equation for nearest-neighbors correlations. It is derived by means of an exact solution to the recurrence equations for partial contractions of creation and annihilation operators for constrained spin bosons in a Holstein-Primakoff representation. In particular, we calculate analytically the total irreducible self-energy, the order parameter, the correlation functions, and the joined occupation probabilities of spin bosons. The developed regular microscopic quantum-field-theory method has a potential for a full solution of a long-standing and still open problem of 3D critical phenomena.
We investigate, by means of extensive Monte Carlo simulations, the magnetic critical behavior of the three-dimensional bimodal random-field Ising model at the strong disorder regime. We present results in favor of the two-exponent scaling scenario, $
We comment on Z. D. Zhangs Response [arXiv:0812.2330] to our recent Comment [arXiv:0811.3876] addressing the conjectured solution of the three-dimensional Ising model reported in [arXiv:0705.1045].
We discuss the exact solution for the properties of the recently introduced ``necklace model for reptation. The solution gives the drift velocity, diffusion constant and renewal time for asymptotically long chains. Its properties are also related to
We consider the three-dimensional Ising model slightly below its critical temperature, with boundary conditions leading to the presence of an interface. We show how the interfacial properties can be deduced starting from the particle modes of the und
We determine the interface tension for the 100, 110 and 111 interface of the simple cubic Ising model with nearest-neighbour interaction using novel simulation methods. To overcome the droplet/strip transition and the droplet nucleation barrier we us