ترغب بنشر مسار تعليمي؟ اضغط هنا

PointCNN: Convolution On $mathcal{X}$-Transformed Points

87   0   0.0 ( 0 )
 نشر من قبل Yangyan Li
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a simple and general framework for feature learning from point clouds. The key to the success of CNNs is the convolution operator that is capable of leveraging spatially-local correlation in data represented densely in grids (e.g. images). However, point clouds are irregular and unordered, thus directly convolving kernels against features associated with the points, will result in desertion of shape information and variance to point ordering. To address these problems, we propose to learn an $mathcal{X}$-transformation from the input points, to simultaneously promote two causes. The first is the weighting of the input features associated with the points, and the second is the permutation of the points into a latent and potentially canonical order. Element-wise product and sum operations of the typical convolution operator are subsequently applied on the $mathcal{X}$-transformed features. The proposed method is a generalization of typical CNNs to feature learning from point clouds, thus we call it PointCNN. Experiments show that PointCNN achieves on par or better performance than state-of-the-art methods on multiple challenging benchmark datasets and tasks.



قيم البحث

اقرأ أيضاً

118 - Haoxi Ran , Wei Zhuo , Jun Liu 2021
The prevalence of relation networks in computer vision is in stark contrast to underexplored point-based methods. In this paper, we explore the possibilities of local relation operators and survey their feasibility. We propose a scalable and efficien t module, called group relation aggregator. The module computes a feature of a group based on the aggregation of the features of the inner-group points weighted by geometric relations and semantic relations. We adopt this module to design our RPNet. We further verify the expandability of RPNet, in terms of both depth and width, on the tasks of classification and segmentation. Surprisingly, empirical results show that wider RPNet fits for classification, while deeper RPNet works better on segmentation. RPNet achieves state-of-the-art for classification and segmentation on challenging benchmarks. We also compare our local aggregator with PointNet++, with around 30% parameters and 50% computation saving. Finally, we conduct experiments to reveal the robustness of RPNet with regard to rigid transformation and noises.
Observing and recognizing materials is a fundamental part of our daily life. Under typical viewing conditions, we are capable of effortlessly identifying the objects that surround us and recognizing the materials they are made of. Nevertheless, under standing the underlying perceptual processes that take place to accurately discern the visual properties of an object is a long-standing problem. In this work, we perform a comprehensive and systematic analysis of how the interplay of geometry, illumination, and their spatial frequencies affects human performance on material recognition tasks. We carry out large-scale behavioral experiments where participants are asked to recognize different reference materials among a pool of candidate samples. In the different experiments, we carefully sample the information in the frequency domain of the stimuli. From our analysis, we find significant first-order interactions between the geometry and the illumination, of both the reference and the candidates. In addition, we observe that simple image statistics and higher-order image histograms do not correlate with human performance. Therefore, we perform a high-level comparison of highly non-linear statistics by training a deep neural network on material recognition tasks. Our results show that such models can accurately classify materials, which suggests that they are capable of defining a meaningful representation of material appearance from labeled proximal image data. Last, we find preliminary evidence that these highly non-linear models and humans may use similar high-level factors for material recognition tasks.
We present DietNeRF, a 3D neural scene representation estimated from a few images. Neural Radiance Fields (NeRF) learn a continuous volumetric representation of a scene through multi-view consistency, and can be rendered from novel viewpoints by ray casting. While NeRF has an impressive ability to reconstruct geometry and fine details given many images, up to 100 for challenging 360{deg} scenes, it often finds a degenerate solution to its image reconstruction objective when only a few input views are available. To improve few-shot quality, we propose DietNeRF. We introduce an auxiliary semantic consistency loss that encourages realistic renderings at novel poses. DietNeRF is trained on individual scenes to (1) correctly render given input views from the same pose, and (2) match high-level semantic attributes across different, random poses. Our semantic loss allows us to supervise DietNeRF from arbitrary poses. We extract these semantics using a pre-trained visual encoder such as CLIP, a Vision Transformer trained on hundreds of millions of diverse single-view, 2D photographs mined from the web with natural language supervision. In experiments, DietNeRF improves the perceptual quality of few-shot view synthesis when learned from scratch, can render novel views with as few as one observed image when pre-trained on a multi-view dataset, and produces plausible completions of completely unobserved regions.
Convolution and self-attention are acting as two fundamental building blocks in deep neural networks, where the former extracts local image features in a linear way while the latter non-locally encodes high-order contextual relationships. Though esse ntially complementary to each other, i.e., first-/high-order, stat-of-the-art architectures, i.e., CNNs or transformers lack a principled way to simultaneously apply both operations in a single computational module, due to their heterogeneous computing pattern and excessive burden of global dot-product for visual tasks. In this work, we theoretically derive a global self-attention approximation scheme, which approximates a self-attention via the convolution operation on transformed features. Based on the approximated scheme, we establish a multi-branch elementary module composed of both convolution and self-attention operation, capable of unifying both local and non-local feature interaction. Importantly, once trained, this multi-branch module could be conditionally converted into a single standard convolution operation via structural re-parameterization, rendering a pure convolution styled operator named X-volution, ready to be plugged into any modern networks as an atomic operation. Extensive experiments demonstrate that the proposed X-volution, achieves highly competitive visual understanding improvements (+1.2% top-1 accuracy on ImageNet classification, +1.7 box AP and +1.5 mask AP on COCO detection and segmentation).
Deep convolutional neural networks (ConvNets) of 3-dimensional kernels allow joint modeling of spatiotemporal features. These networks have improved performance of video and volumetric image analysis, but have been limited in size due to the low memo ry ceiling of GPU hardware. Existing CPU implementations overcome this constraint but are impractically slow. Here we extend and optimize the faster Winograd-class of convolutional algorithms to the $N$-dimensional case and specifically for CPU hardware. First, we remove the need to manually hand-craft algorithms by exploiting the relaxed constraints and cheap sparse access of CPU memory. Second, we maximize CPU utilization and multicore scalability by transforming data matrices to be cache-aware, integer multiples of AVX vector widths. Treating 2-dimensional ConvNets as a special (and the least beneficial) case of our approach, we demonstrate a 5 to 25-fold improvement in throughput compared to previous state-of-the-art.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا