ترغب بنشر مسار تعليمي؟ اضغط هنا

X-volution: On the unification of convolution and self-attention

77   0   0.0 ( 0 )
 نشر من قبل Hang Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Convolution and self-attention are acting as two fundamental building blocks in deep neural networks, where the former extracts local image features in a linear way while the latter non-locally encodes high-order contextual relationships. Though essentially complementary to each other, i.e., first-/high-order, stat-of-the-art architectures, i.e., CNNs or transformers lack a principled way to simultaneously apply both operations in a single computational module, due to their heterogeneous computing pattern and excessive burden of global dot-product for visual tasks. In this work, we theoretically derive a global self-attention approximation scheme, which approximates a self-attention via the convolution operation on transformed features. Based on the approximated scheme, we establish a multi-branch elementary module composed of both convolution and self-attention operation, capable of unifying both local and non-local feature interaction. Importantly, once trained, this multi-branch module could be conditionally converted into a single standard convolution operation via structural re-parameterization, rendering a pure convolution styled operator named X-volution, ready to be plugged into any modern networks as an atomic operation. Extensive experiments demonstrate that the proposed X-volution, achieves highly competitive visual understanding improvements (+1.2% top-1 accuracy on ImageNet classification, +1.7 box AP and +1.5 mask AP on COCO detection and segmentation).

قيم البحث

اقرأ أيضاً

Light-weight convolutional neural networks (CNNs) suffer performance degradation as their low computational budgets constrain both the depth (number of convolution layers) and the width (number of channels) of CNNs, resulting in limited representatio n capability. To address this issue, we present Dynamic Convolution, a new design that increases model complexity without increasing the network depth or width. Instead of using a single convolution kernel per layer, dynamic convolution aggregates multiple parallel convolution kernels dynamically based upon their attentions, which are input dependent. Assembling multiple kernels is not only computationally efficient due to the small kernel size, but also has more representation power since these kernels are aggregated in a non-linear way via attention. By simply using dynamic convolution for the state-of-the-art architecture MobileNetV3-Small, the top-1 accuracy of ImageNet classification is boosted by 2.9% with only 4% additional FLOPs and 2.9 AP gain is achieved on COCO keypoint detection.
Transformers have attracted increasing interests in computer vision, but they still fall behind state-of-the-art convolutional networks. In this work, we show that while Transformers tend to have larger model capacity, their generalization can be wor se than convolutional networks due to the lack of the right inductive bias. To effectively combine the strengths from both architectures, we present CoAtNets(pronounced coat nets), a family of hybrid models built from two key insights: (1) depthwise Convolution and self-Attention can be naturally unified via simple relative attention; (2) vertically stacking convolution layers and attention layers in a principled way is surprisingly effective in improving generalization, capacity and efficiency. Experiments show that our CoAtNets achieve state-of-the-art performance under different resource constraints across various datasets: Without extra data, CoAtNet achieves 86.0% ImageNet top-1 accuracy; When pre-trained with 13M images from ImageNet-21K, our CoAtNet achieves 88.56% top-1 accuracy, matching ViT-huge pre-trained with 300M images from JFT-300M while using 23x less data; Notably, when we further scale up CoAtNet with JFT-3B, it achieves 90.88% top-1 accuracy on ImageNet, establishing a new state-of-the-art result.
We present a simple and general framework for feature learning from point clouds. The key to the success of CNNs is the convolution operator that is capable of leveraging spatially-local correlation in data represented densely in grids (e.g. images). However, point clouds are irregular and unordered, thus directly convolving kernels against features associated with the points, will result in desertion of shape information and variance to point ordering. To address these problems, we propose to learn an $mathcal{X}$-transformation from the input points, to simultaneously promote two causes. The first is the weighting of the input features associated with the points, and the second is the permutation of the points into a latent and potentially canonical order. Element-wise product and sum operations of the typical convolution operator are subsequently applied on the $mathcal{X}$-transformed features. The proposed method is a generalization of typical CNNs to feature learning from point clouds, thus we call it PointCNN. Experiments show that PointCNN achieves on par or better performance than state-of-the-art methods on multiple challenging benchmark datasets and tasks.
Self-Attention has become prevalent in computer vision models. Inspired by fully connected Conditional Random Fields (CRFs), we decompose it into local and context terms. They correspond to the unary and binary terms in CRF and are implemented by att ention mechanisms with projection matrices. We observe that the unary terms only make small contributions to the outputs, and meanwhile standard CNNs that rely solely on the unary terms achieve great performances on a variety of tasks. Therefore, we propose Locally Enhanced Self-Attention (LESA), which enhances the unary term by incorporating it with convolutions, and utilizes a fusion module to dynamically couple the unary and binary operations. In our experiments, we replace the self-attention modules with LESA. The results on ImageNet and COCO show the superiority of LESA over convolution and self-attention baselines for the tasks of image recognition, object detection, and instance segmentation. The code is made publicly available.
141 - Min Feng , Feng Gao , Jian Fang 2021
An efficient linear self-attention fusion model is proposed in this paper for the task of hyperspectral image (HSI) and LiDAR data joint classification. The proposed method is comprised of a feature extraction module, an attention module, and a fusio n module. The attention module is a plug-and-play linear self-attention module that can be extensively used in any model. The proposed model has achieved the overall accuracy of 95.40% on the Houston dataset. The experimental results demonstrate the superiority of the proposed method over other state-of-the-art models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا