ترغب بنشر مسار تعليمي؟ اضغط هنا

The joint role of geometry and illumination on material recognition

68   0   0.0 ( 0 )
 نشر من قبل Manuel Lagunas
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Observing and recognizing materials is a fundamental part of our daily life. Under typical viewing conditions, we are capable of effortlessly identifying the objects that surround us and recognizing the materials they are made of. Nevertheless, understanding the underlying perceptual processes that take place to accurately discern the visual properties of an object is a long-standing problem. In this work, we perform a comprehensive and systematic analysis of how the interplay of geometry, illumination, and their spatial frequencies affects human performance on material recognition tasks. We carry out large-scale behavioral experiments where participants are asked to recognize different reference materials among a pool of candidate samples. In the different experiments, we carefully sample the information in the frequency domain of the stimuli. From our analysis, we find significant first-order interactions between the geometry and the illumination, of both the reference and the candidates. In addition, we observe that simple image statistics and higher-order image histograms do not correlate with human performance. Therefore, we perform a high-level comparison of highly non-linear statistics by training a deep neural network on material recognition tasks. Our results show that such models can accurately classify materials, which suggests that they are capable of defining a meaningful representation of material appearance from labeled proximal image data. Last, we find preliminary evidence that these highly non-linear models and humans may use similar high-level factors for material recognition tasks.



قيم البحث

اقرأ أيضاً

We present a method for generating colored 3D shapes from natural language. To this end, we first learn joint embeddings of freeform text descriptions and colored 3D shapes. Our model combines and extends learning by association and metric learning a pproaches to learn implicit cross-modal connections, and produces a joint representation that captures the many-to-many relations between language and physical properties of 3D shapes such as color and shape. To evaluate our approach, we collect a large dataset of natural language descriptions for physical 3D objects in the ShapeNet dataset. With this learned joint embedding we demonstrate text-to-shape retrieval that outperforms baseline approaches. Using our embeddings with a novel conditional Wasserstein GAN framework, we generate colored 3D shapes from text. Our method is the first to connect natural language text with realistic 3D objects exhibiting rich variations in color, texture, and shape detail. See video at https://youtu.be/zraPvRdl13Q
Scalable sensor simulation is an important yet challenging open problem for safety-critical domains such as self-driving. Current works in image simulation either fail to be photorealistic or do not model the 3D environment and the dynamic objects wi thin, losing high-level control and physical realism. In this paper, we present GeoSim, a geometry-aware image composition process which synthesizes novel urban driving scenarios by augmenting existing images with dynamic objects extracted from other scenes and rendered at novel poses. Towards this goal, we first build a diverse bank of 3D objects with both realistic geometry and appearance from sensor data. During simulation, we perform a novel geometry-aware simulation-by-composition procedure which 1) proposes plausible and realistic object placements into a given scene, 2) render novel views of dynamic objects from the asset bank, and 3) composes and blends the rendered image segments. The resulting synthetic images are realistic, traffic-aware, and geometrically consistent, allowing our approach to scale to complex use cases. We demonstrate two such important applications: long-range realistic video simulation across multiple camera sensors, and synthetic data generation for data augmentation on downstream segmentation tasks. Please check https://tmux.top/publication/geosim/ for high-resolution video results.
Most human action recognition systems typically consider static appearances and motion as independent streams of information. In this paper, we consider the evolution of human pose and propose a method to better capture interdependence among skeleton joints. Our model extracts motion information from each joint independently, reweighs the information and finally performs inter-joint reasoning. The effectiveness of pose and joint-based representations is strengthened using a geometry-aware data augmentation technique which jitters pose heatmaps while retaining the dynamics of the action. Our best model gives an absolute improvement of 8.19% on JHMDB, 4.31% on HMDB and 1.55 mAP on Charades datasets over state-of-the-art methods using pose heat-maps alone. Fusing with RGB and flow streams leads to improvement over state-of-the-art. Our model also outperforms the baseline on Mimetics, a dataset with out-of-context videos by 1.14% while using only pose heatmaps. Further, to filter out clips irrelevant for action recognition, we re-purpose our model for clip selection guided by pose information and show improved performance using fewer clips.
Learning-based image compression was shown to achieve a competitive performance with state-of-the-art transform-based codecs. This motivated the development of new learning-based visual compression standards such as JPEG-AI. Of particular interest to these emerging standards is the development of learning-based image compression systems targeting both humans and machines. This paper is concerned with learning-based compression schemes whose compressed-domain representations can be utilized to perform visual processing and computer vision tasks directly in the compressed domain. Such a characteristic has been incorporated as part of the scope and requirements of the new emerging JPEG-AI standard. In our work, we adopt the learning-based JPEG-AI framework for performing material and texture recognition using the compressed-domain latent representation at varing bit-rates. For comparison, performance results are presented using compressed but fully decoded images in the pixel domain as well as original uncompressed images. The obtained performance results show that even though decoded images can degrade the classification performance of the model trained with original images, retraining the model with decoded images will largely reduce the performance gap for the adopted texture dataset. It is also shown that the compressed-domain classification can yield a competitive performance in terms of Top-1 and Top-5 accuracy while using a smaller reduced-complexity classification model.
Modern computer vision algorithms have brought significant advancement to 3D geometry reconstruction. However, illumination and material reconstruction remain less studied, with current approaches assuming very simplified models for materials and ill umination. We introduce Inverse Path Tracing, a novel approach to jointly estimate the material properties of objects and light sources in indoor scenes by using an invertible light transport simulation. We assume a coarse geometry scan, along with corresponding images and camera poses. The key contribution of this work is an accurate and simultaneous retrieval of light sources and physically based material properties (e.g., diffuse reflectance, specular reflectance, roughness, etc.) for the purpose of editing and re-rendering the scene under new conditions. To this end, we introduce a novel optimization method using a differentiable Monte Carlo renderer that computes derivatives with respect to the estimated unknown illumination and material properties. This enables joint optimization for physically correct light transport and material models using a tailored stochastic gradient descent.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا