ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin polarized semimagnetic exciton-polariton condensate in magnetic field

109   0   0.0 ( 0 )
 نشر من قبل Mateusz Kr\\'ol
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mateusz Krol




اسأل ChatGPT حول البحث

Owing to their integer spin, exciton-polaritons in microcavities can be used for observation of non-equilibrium Bose-Einstein condensation in solid state. However, spin-related phenomena of such condensates are difficult to explore due to the relatively small Zeeman effect of standard semiconductor microcavity systems and the strong tendency to sustain an equal population of two spin components, which precludes the observation of condensates with a well defined spin projection along the axis of the system. The enhancement of the Zeeman splitting can be achieved by introducing magnetic ions to the quantum wells, and consequently forming semimagnetic polaritons. In this system, increasing magnetic field can induce polariton condensation at constant excitation power. Here we evidence the spin polarization of a semimagnetic polaritons condensate exhibiting a circularly polarized emission over 95% even in a moderate magnetic field of about 3 T. Furthermore, we show that unlike nonmagnetic polaritons, an increase on excitation power results in an increase of the semimagnetic polaritons condensate spin polarization. These properties open new possibilities for testing theoretically predicted phenomena of spin polarized condensate.

قيم البحث

اقرأ أيضاً

We evidence magnetic field triggered polariton lasing in a microcavity containing semimagnetic quantum wells. This effect is associated with a decrease of the polariton lasing threshold power in magnetic field. The observed magnetic field dependence of the threshold power systematically exhibits a minimum which only weakly depends on the zero-field photon-exciton detuning. These results are interpreted as a consequence of the polariton giant Zeeman splitting which in magnetic field: leads to a decrease of the number of accessible states in the lowest polariton branch by a factor of two, and substantially changes the photon-exciton detuning.
We observe a spontaneous parity breaking bifurcation to a ferromagnetic state in a spatially trapped exciton-polariton condensate. At a critical bifurcation density under nonresonant excitation, the whole condensate spontaneously magnetizes and rando mly adopts one of two elliptically polarized (up to 95% circularly-polarized) states with opposite handedness of polarization. The magnetized condensate remains stable for many seconds at 5 K, but at higher temperatures it can flip from one magnetic orientation to another. We optically address these states and demonstrate the inversion of the magnetic state by resonantly injecting 100-fold weaker pulses of opposite spin. Theoretically, these phenomena can be well described as spontaneous symmetry breaking of the spin degree of freedom induced by different loss rates of the linear polarizations.
Interacting Bosons, loaded in artificial lattices, have emerged as a modern platform to explore collective manybody phenomena, quantum phase transitions and exotic phases of matter as well as to enable advanced on chip simulators. Such experiments st rongly rely on well-defined shaping the potential landscape of the Bosons, respectively Bosonic quasi-particles, and have been restricted to cryogenic, or even ultra-cold temperatures. On chip, the GaAs-based exciton-polariton platform emerged as a promising system to implement and study bosonic non-linear systems in lattices, yet demanding cryogenic temperatures. In our work, we discuss the first experiment conducted on a polaritonic lattice at ambient conditions: We utilize fluorescent proteins as an excitonic gain material, providing ultra-stable Frenkel excitons. We directly take advantage of their soft nature by mechanically shaping them in the photonic one-dimensional lattice. We demonstrate controlled loading of the condensate in distinct orbital lattice modes of different symmetries, and finally explore, as an illustrative example, the formation of a gap solitonic mode, driven by the interplay of effective interaction and negative effective mass in our lattice. The observed phenomena in our open dissipative system are comprehensively scrutinized by a nonequilibrium model of polariton condensation. We believe, that this work is establishing the organic polariton platform as a serious contender to the well-established GaAs platform for a wide range of applications relying on coherent Bosons in lattices, given its unprecedented flexibility, cost effectiveness and operation temperature.
We measure the full photon-number distribution emitted from a Bose condensate of microcavity exciton-polaritons confined in a micropillar cavity. The statistics are acquired by means of a photonnumber resolving transition edge sensor. We directly obs erve that the photon-number distribution evolves with the non-resonant optical excitation power from geometric to quasi-Poissonian statistics, which is canonical for a transition from a thermal to a coherent state. Moreover, the photon-number distribution allows evaluating the higher-order photon correlations, shedding further light on the coherence formation and phase transition of the polariton condensate. The experimental data is analyzed in terms of thermal coherent states which allows one to directly extract the thermal and coherent fraction from the measured distributions. These results pave the way for a full understanding of the contribution of interactions in light-matter condensates in the coherence buildup at threshold.
We generalize the spin Meissner effect for exciton-polariton condensate confined in annular geometries to the case of non-trivial topology of the condensate wavefunction. In contrast to the conventional spin Meissner state, topological spin Meissner states can in principle be observed at arbitrary high magnetic field not limited by the critical magnetic field value for the condensate in a simply-connected geometry. One special example of the topological Meissner states are half-vortices. We show that in the absence of magnetic field half-vortices in a ring exist in a form of superposition of elementary half-vortex states which resolves recent experimental results where such puzzling superposition was observed. Furthermore, we show that if a pure half-vortex state is to be observed, a non-zero magnetic field of a specific magnitude needs to be applied. Studying exciton-polariton in a ring in presence of TE-TM splitting, we observe spin Meissner states which break rotational symmetry of the system by developing inhomogeneous density distributions. We classify various states arising in presence of non-zero TE-TM splitting based on what states they can be continued from by increasing the TE-TM splitting parameter from zero. With further increasing TE-TM splitting, states with broken symmetry may transform into stable half-dark solitons and therefore may serve as a useful tool to generate various non-trivial states of a spinor condensate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا