ﻻ يوجد ملخص باللغة العربية
Interacting Bosons, loaded in artificial lattices, have emerged as a modern platform to explore collective manybody phenomena, quantum phase transitions and exotic phases of matter as well as to enable advanced on chip simulators. Such experiments strongly rely on well-defined shaping the potential landscape of the Bosons, respectively Bosonic quasi-particles, and have been restricted to cryogenic, or even ultra-cold temperatures. On chip, the GaAs-based exciton-polariton platform emerged as a promising system to implement and study bosonic non-linear systems in lattices, yet demanding cryogenic temperatures. In our work, we discuss the first experiment conducted on a polaritonic lattice at ambient conditions: We utilize fluorescent proteins as an excitonic gain material, providing ultra-stable Frenkel excitons. We directly take advantage of their soft nature by mechanically shaping them in the photonic one-dimensional lattice. We demonstrate controlled loading of the condensate in distinct orbital lattice modes of different symmetries, and finally explore, as an illustrative example, the formation of a gap solitonic mode, driven by the interplay of effective interaction and negative effective mass in our lattice. The observed phenomena in our open dissipative system are comprehensively scrutinized by a nonequilibrium model of polariton condensation. We believe, that this work is establishing the organic polariton platform as a serious contender to the well-established GaAs platform for a wide range of applications relying on coherent Bosons in lattices, given its unprecedented flexibility, cost effectiveness and operation temperature.
Interacting bosonic particles in artificial lattices have proven to be a powerful tool for the investigation of exotic phases of matter as well as phenomena resulting from non-trivial topology. Exciton-polaritons, bosonic quasi-particles of light and
The strong light-matter coupling of a microcavity mode to tightly bound Frenkel excitons in organic materials emerged as a versatile, room-temperature compatible platform to study nonlinear many-particle physics and bosonic condensation. However, var
A cavity-polariton, formed due to the strong coupling between exciton and cavity mode, is one of the most promising composite bosons for realizing macroscopic spontaneous coherence at high temperature. Up to date, most of polariton quantum degeneracy
Engineering non-linear hybrid light-matter states in tailored optical lattices is a central research strategy for the simulation of complex Hamiltonians. Excitons in atomically thin crystals are an ideal active medium for such purposes, since they co
We observe a spontaneous parity breaking bifurcation to a ferromagnetic state in a spatially trapped exciton-polariton condensate. At a critical bifurcation density under nonresonant excitation, the whole condensate spontaneously magnetizes and rando