ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological spin Meissner effect in exciton-polariton spinor condensate: constant amplitude solutions, half-vortices and symmetry breaking

376   0   0.0 ( 0 )
 نشر من قبل Dmitry Gulevich R
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We generalize the spin Meissner effect for exciton-polariton condensate confined in annular geometries to the case of non-trivial topology of the condensate wavefunction. In contrast to the conventional spin Meissner state, topological spin Meissner states can in principle be observed at arbitrary high magnetic field not limited by the critical magnetic field value for the condensate in a simply-connected geometry. One special example of the topological Meissner states are half-vortices. We show that in the absence of magnetic field half-vortices in a ring exist in a form of superposition of elementary half-vortex states which resolves recent experimental results where such puzzling superposition was observed. Furthermore, we show that if a pure half-vortex state is to be observed, a non-zero magnetic field of a specific magnitude needs to be applied. Studying exciton-polariton in a ring in presence of TE-TM splitting, we observe spin Meissner states which break rotational symmetry of the system by developing inhomogeneous density distributions. We classify various states arising in presence of non-zero TE-TM splitting based on what states they can be continued from by increasing the TE-TM splitting parameter from zero. With further increasing TE-TM splitting, states with broken symmetry may transform into stable half-dark solitons and therefore may serve as a useful tool to generate various non-trivial states of a spinor condensate.

قيم البحث

اقرأ أيضاً

We study theoretically the ground states of topological defects in a spinor four-component condensate of cold indirect excitons. We analyze possible ground state solutions for different configurations of vortices and half-vortices. We show that if on ly Rashba or Dreselhaus spin-orbit interaction (SOI) for electrons is present the stable states of topological defects can represent a cylindrically symmetric half-vortex or half vortex-antivortex pairs, or a non-trivial pattern with warped vortices. In the presence of both of Rashba and Dresselhaus SOI the ground state of a condensate represents a stripe phase and vortex type solutions become unstable.
We observe a spontaneous parity breaking bifurcation to a ferromagnetic state in a spatially trapped exciton-polariton condensate. At a critical bifurcation density under nonresonant excitation, the whole condensate spontaneously magnetizes and rando mly adopts one of two elliptically polarized (up to 95% circularly-polarized) states with opposite handedness of polarization. The magnetized condensate remains stable for many seconds at 5 K, but at higher temperatures it can flip from one magnetic orientation to another. We optically address these states and demonstrate the inversion of the magnetic state by resonantly injecting 100-fold weaker pulses of opposite spin. Theoretically, these phenomena can be well described as spontaneous symmetry breaking of the spin degree of freedom induced by different loss rates of the linear polarizations.
Singly quantized vortices have been already observed in many systems including the superfluid helium, Bose Einstein condensates of dilute atomic gases, and condensates of exciton polaritons in the solid state. Two dimensional superfluids carrying spi n are expected to demonstrate a different type of elementary excitations referred to as half quantum vortices characterized by a pi rotation of the phase and a pi rotation of the polarization vector when circumventing the vortex core. We detect half quantum vortices in an exciton-polariton condensate by means of polarization resolved interferometry, real space spectroscopy and phase imaging. Half quantum vortices coexist with single quantum vortices in our sample.
First order coherence measurements of a polariton condensate, reveal a regime where the condensate pseudo-spin precesses persistently within the driving optical pulse. Within a single 20 $mu$s optical pulse the condensate pseudo-spin performs over $1 0^5$ precessions with striking frequency stability. The condensate maintains its phase coherence even after a complete precession of the spin vector, making the observed state by a definition a spin coherent state. The emergence of the precession is traced to the polariton interactions that give rise to a self-induced out-of-plane magnetic field that in turn drives the spin dynamics. We find that the Larmor oscillation frequency scales with the condensate density, enabling external tuning of this effect by optical means. The stability of the system allows for the realization of integrated optical magnetometry devices with the use of materials with enhanced exciton $g$-factor and can facilitate spin squeezing effects and active coherent control on the Bloch sphere in polariton condensates.
We consider theoretically one-dimensional polariton ring accounting for both longitudinal-transverse (TE-TM) and Zeeman splitting of spinor polariton states and spin dependent polariton-polariton interactions. We present the novel class of solutions in the form of the localized defects rotating with constant angular velocity and analyze their properties for realistic values of the parameters of the system. We show that the effects of the geometric phase arising from the interplay between external magnetic field and TE-TM splitting introduce chirality in the system and make solitons propagating in clockwise and anticlockwise directions non equivalent. This can be interpreted as solitonic analog of Aharonov-Bohm effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا