ترغب بنشر مسار تعليمي؟ اضغط هنا

Photon number-resolved measurement of an exciton-polariton condensate

163   0   0.0 ( 0 )
 نشر من قبل Martin Klaas
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure the full photon-number distribution emitted from a Bose condensate of microcavity exciton-polaritons confined in a micropillar cavity. The statistics are acquired by means of a photonnumber resolving transition edge sensor. We directly observe that the photon-number distribution evolves with the non-resonant optical excitation power from geometric to quasi-Poissonian statistics, which is canonical for a transition from a thermal to a coherent state. Moreover, the photon-number distribution allows evaluating the higher-order photon correlations, shedding further light on the coherence formation and phase transition of the polariton condensate. The experimental data is analyzed in terms of thermal coherent states which allows one to directly extract the thermal and coherent fraction from the measured distributions. These results pave the way for a full understanding of the contribution of interactions in light-matter condensates in the coherence buildup at threshold.

قيم البحث

اقرأ أيضاً

70 - Nadav Landau 2020
We observe for the first time two-photon excited condensation of exciton-polaritons. The angle-resolved photoluminescence (PL) from the Lower Polariton (LP) ground state in our planar GaAs-based microcavity structure exhibits a clear intensity thresh old as a function of increased two-photon excitation power, coinciding with an interaction-induced blueshift and a narrowing of spectral linewidth, characteristic of the transition from a thermal distribution of lower polaritons to polariton condensation. Two-Photon Absorption (TPA) is evidenced in the quadratic dependence of the input-output curves below and above the threshold region. Second Harmonic Generation (SHG) is ruled out by both this threshold behavior and by scanning the pump photon energy and observing a lack of dependence of the LP emission peak energy. Our results pave the way towards realization of a polariton-based stimulated THz radiation source, stemming from the dipole-allowed transition from the Quantum Well (QW) 2p dark exciton state to the 1s-exciton-based LP ground state, as theoretically predicted in [A. V. Kavokin et al., Phys. Rev. Lett. 108, 197401 (2012)].
The quest to realise strongly interacting photons remains an outstanding challenge both for fundamental science and for applications. Here, we explore mediated photon-photon interactions in a highly imbalanced two-component mixture of exciton-polarit ons in a semiconductor microcavity. Using a theory that takes into account non-perturbative correlations between the excitons as well as strong light-matter coupling, we demonstrate the high tunability of an effective interaction between quasiparticles formed by minority component polaritons interacting with a Bose-Einstein condensate (BEC) of a majority component polaritons. In particular, the interaction, which is mediated by the exchange of sound modes in the BEC can be made strong enough to support a bound state of two quasiparticles. Since these quasiparticles consist partly of photons, this in turn corresponds to a dimer state of photons propagating through the BEC. This gives rise to a new light transmission line where the bound state wave function is directly mapped onto correlations between outgoing photons. Our findings open up new routes for realising highly non-linear optical materials and novel hybrid light-matter quantum systems.
Interacting Bosons, loaded in artificial lattices, have emerged as a modern platform to explore collective manybody phenomena, quantum phase transitions and exotic phases of matter as well as to enable advanced on chip simulators. Such experiments st rongly rely on well-defined shaping the potential landscape of the Bosons, respectively Bosonic quasi-particles, and have been restricted to cryogenic, or even ultra-cold temperatures. On chip, the GaAs-based exciton-polariton platform emerged as a promising system to implement and study bosonic non-linear systems in lattices, yet demanding cryogenic temperatures. In our work, we discuss the first experiment conducted on a polaritonic lattice at ambient conditions: We utilize fluorescent proteins as an excitonic gain material, providing ultra-stable Frenkel excitons. We directly take advantage of their soft nature by mechanically shaping them in the photonic one-dimensional lattice. We demonstrate controlled loading of the condensate in distinct orbital lattice modes of different symmetries, and finally explore, as an illustrative example, the formation of a gap solitonic mode, driven by the interplay of effective interaction and negative effective mass in our lattice. The observed phenomena in our open dissipative system are comprehensively scrutinized by a nonequilibrium model of polariton condensation. We believe, that this work is establishing the organic polariton platform as a serious contender to the well-established GaAs platform for a wide range of applications relying on coherent Bosons in lattices, given its unprecedented flexibility, cost effectiveness and operation temperature.
108 - Mateusz Krol 2018
Owing to their integer spin, exciton-polaritons in microcavities can be used for observation of non-equilibrium Bose-Einstein condensation in solid state. However, spin-related phenomena of such condensates are difficult to explore due to the relativ ely small Zeeman effect of standard semiconductor microcavity systems and the strong tendency to sustain an equal population of two spin components, which precludes the observation of condensates with a well defined spin projection along the axis of the system. The enhancement of the Zeeman splitting can be achieved by introducing magnetic ions to the quantum wells, and consequently forming semimagnetic polaritons. In this system, increasing magnetic field can induce polariton condensation at constant excitation power. Here we evidence the spin polarization of a semimagnetic polaritons condensate exhibiting a circularly polarized emission over 95% even in a moderate magnetic field of about 3 T. Furthermore, we show that unlike nonmagnetic polaritons, an increase on excitation power results in an increase of the semimagnetic polaritons condensate spin polarization. These properties open new possibilities for testing theoretically predicted phenomena of spin polarized condensate.
We report on time resolved measurements of the first order spatial coherence in an exciton polariton Bose-Einstein condensate. Long range spatial coherence is found to set in right at the onset of stimulated scattering, on a picosecond time scale. Th e coherence reaches its maximum value after the population and decays slower, staying up to a few hundreds of picoseconds. This behavior can be qualitatively reproduced, using a stochastic classical field model describing interaction between the polariton condensate and the exciton reservoir within a disordered potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا