ترغب بنشر مسار تعليمي؟ اضغط هنا

Collapsing spherical star in Scalar-Einstein-Gauss-Bonnet gravity with a quadratic coupling

120   0   0.0 ( 0 )
 نشر من قبل Soumya Chakrabarti
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the evolution of a self interacting scalar field in Einstein-Gauss-Bonnet theory in four dimension where the scalar field couples non minimally with the Gauss-Bonnet term. Considering a polynomial coupling of the scalar field with the Gauss-Bonnet term, a self-interaction potential and an additional perfect fluid distribution alongwith the scalar field, we investigate different possibilities regarding the outcome of the collapsing scalar field. The strength of the coupling and choice of the self-interaction potential serves as the pivotal initial conditions of the models presented. The high degree of non-linearity in the equation system is taken care off by using a method of invertibe point transformation of anharmonic oscillator equation, which has proven itself very useful in recent past while investigating dynamics of minimally coupled scalar fields.



قيم البحث

اقرأ أيضاً

We present the $d+1$ formulation of Einstein-scalar-Gauss-Bonnet (ESGB) theories in dimension $D=d+1$ and for arbitrary (spacelike or timelike) slicings. We first build an action which generalizes those of Gibbons-Hawking-York and Myers to ESGB theor ies, showing that they can be described by a Dirichlet variational principle. We then generalize the Arnowitt-Deser-Misner (ADM) Lagrangian and Hamiltonian to ESGB theories, as well as the resulting $d+1$ decomposition of the equations of motion. Unlike general relativity, the canonical momenta of ESGB theories are nonlinear in the extrinsic curvature. This has two main implications: (i) the ADM Hamiltonian is generically multivalued, and the associated Hamiltonian evolution is not predictable; (ii) the $d+1$ equations of motion are quasilinear, and they may break down in strongly curved, highly dynamical regimes. Our results should be useful to guide future developments of numerical relativity for ESGB gravity in the nonperturbative regime.
We compute the Hamiltonian for spherically symmetric scalar field collapse in Einstein-Gauss-Bonnet gravity in D dimensions using slicings that are regular across future horizons. We first reduce the Lagrangian to two dimensions using spherical symme try. We then show that choosing the spatial coordinate to be a function of the areal radius leads to a relatively simple Hamiltonian constraint whose gravitational part is the gradient of the generalized mass function. Next we complete the gauge fixing such that the metric is the Einstein-Gauss-Bonnet generalization of non-static Painleve-Gullstrand coordinates. Finally, we derive the resultant reduced equations of motion for the scalar field. These equations are suitable for use in numerical simulations of spherically symmetric scalar field collapse in Gauss-Bonnet gravity and can readily be generalized to other matter fields minimally coupled to gravity.
We discuss the cosmological evolution of a braneworld in five dimensional Gauss-Bonnet gravity. Our discussion allows the fifth (bulk) dimension to be space-like as well as time-like. The resulting equations of motion have the form of a cubic equatio n in the (H^2,(rho+sigma)^2) plane, where sigma is the brane tension and rho is the matter density. This allows us to conduct a comprehensive pictorial analysis of cosmological evolution for the Gauss-Bonnet brane. The many interesting properties of this braneworld include the possibility of accelerated expansion at late times. For a finite region in parameter space the accelerated expansion can be phantom-like so that w < -1. At late times, this branch approaches de Sitter space (w = -1) and avoids the big-rip singularities usually present in phantom models. For a time-like extra dimension the Gauss-Bonnet brane can bounce and avoid the initial singularity.
In this brief report, we investigate the existence of 4-dimensional static spherically symmetric black holes (BHs) in the Einstein-complex-scalar-Gauss-Bonnet (EcsGB) gravity with an arbitrary potential $V(phi)$ and a coupling $f(phi)$ between the sc alar field $phi$ and the Gauss-Bonnet (GB) term. We find that static regular BH solutions with complex scalar hairs do not exist. This conclusion does not depend on the coupling between the GB term and the scalar field, nor on the scalar potential $V(phi)$ and the presence of a cosmological constant $Lambda$ (which can be either positive or negative), as longer as the scalar field remains complex and is regular across the horizon.
51 - Rustam Ibadov 2020
We construct wormholes in Einstein-scalar-Gauss-Bonnet theories with a potential for the scalar field that includes a mass term and self-interaction terms. By varying the Gauss-Bonnet coupling constant we delimit the domain of existence of wormholes in these theories. The presence of the self-interaction enlarges the domain of existence significantly. There arise wormholes with a single throat and wormholes with an equator and a double throat. We determine the physical properties of these wormholes including their mass, their size and their geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا