ترغب بنشر مسار تعليمي؟ اضغط هنا

Wormholes in Einstein-scalar-Gauss-Bonnet theories with a scalar self-interaction potential

52   0   0.0 ( 0 )
 نشر من قبل Burkhard Kleihaus
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Rustam Ibadov




اسأل ChatGPT حول البحث

We construct wormholes in Einstein-scalar-Gauss-Bonnet theories with a potential for the scalar field that includes a mass term and self-interaction terms. By varying the Gauss-Bonnet coupling constant we delimit the domain of existence of wormholes in these theories. The presence of the self-interaction enlarges the domain of existence significantly. There arise wormholes with a single throat and wormholes with an equator and a double throat. We determine the physical properties of these wormholes including their mass, their size and their geometry.

قيم البحث

اقرأ أيضاً

We compute the Hamiltonian for spherically symmetric scalar field collapse in Einstein-Gauss-Bonnet gravity in D dimensions using slicings that are regular across future horizons. We first reduce the Lagrangian to two dimensions using spherical symme try. We then show that choosing the spatial coordinate to be a function of the areal radius leads to a relatively simple Hamiltonian constraint whose gravitational part is the gradient of the generalized mass function. Next we complete the gauge fixing such that the metric is the Einstein-Gauss-Bonnet generalization of non-static Painleve-Gullstrand coordinates. Finally, we derive the resultant reduced equations of motion for the scalar field. These equations are suitable for use in numerical simulations of spherically symmetric scalar field collapse in Gauss-Bonnet gravity and can readily be generalized to other matter fields minimally coupled to gravity.
We present the $d+1$ formulation of Einstein-scalar-Gauss-Bonnet (ESGB) theories in dimension $D=d+1$ and for arbitrary (spacelike or timelike) slicings. We first build an action which generalizes those of Gibbons-Hawking-York and Myers to ESGB theor ies, showing that they can be described by a Dirichlet variational principle. We then generalize the Arnowitt-Deser-Misner (ADM) Lagrangian and Hamiltonian to ESGB theories, as well as the resulting $d+1$ decomposition of the equations of motion. Unlike general relativity, the canonical momenta of ESGB theories are nonlinear in the extrinsic curvature. This has two main implications: (i) the ADM Hamiltonian is generically multivalued, and the associated Hamiltonian evolution is not predictable; (ii) the $d+1$ equations of motion are quasilinear, and they may break down in strongly curved, highly dynamical regimes. Our results should be useful to guide future developments of numerical relativity for ESGB gravity in the nonperturbative regime.
We study the dynamics of black holes in Einstein-scalar-Gauss-Bonnet theories that exhibit spontaneous black hole scalarization using recently introduced methods for solving the full, non-perturbative equations of motion. For one sign of the coupling parameter, non-spinning vacuum black holes are unstable to developing scalar hair, while for the other, instability only sets in for black holes with sufficiently large spin. We study scalarization in both cases, demonstrating that there is a range of parameter space where the theory maintains hyperbolic evolution and for which the instability saturates in a scalarized black hole that is stable without symmetry assumptions. However, this parameter space range is significantly smaller than the range for which stationary scalarized black hole solutions exist. We show how different choices for the subleading behavior of the Gauss-Bonnet coupling affect the dynamics of the instability and the final state, or lack thereof. Finally, we present mergers of binary black holes and demonstrate the imprint of the scalar hair in the gravitational radiation.
Spontaneous scalarization is a gravitational phenomenon in which deviations from general relativity arise once a certain threshold in curvature is exceeded, while being entirely absent below that threshold. For black holes, scalarization is known to be triggered by a coupling between a scalar and the Gauss-Bonnet invariant. A coupling with the Ricci scalar, which can trigger scalarization in neutron stars, is instead known to not contribute to the onset of black hole scalarization, and has so far been largely ignored in the literature when studying scalarized black holes. In this paper, we study the combined effect of both these couplings on black hole scalarization. We show that the Ricci coupling plays a significant role in the properties of scalarized solutions and their domain of existence. This work is an important step in the construction of scalarization models that evade binary pulsar constraints and have general relativity as a cosmological late-time attractor, while still predicting deviations from general relativity in black hole observations.
In a subclass of scalar-tensor theories, it has been shown that standard general relativity solutions of neutron stars and black holes with trivial scalar field profiles are unstable. Such an instability leads to solutions which are different from th ose of general relativity and have non-trivial scalar field profiles, in a process called scalarization. In the present work we focus on scalarization due to a non-minimal coupling of the scalar field to the Gauss-Bonnet curvature invariant. The coupling acts as a tachyonic mass for the scalar mode, thus leading to the instability of general relativity solutions. We point out that a similar effect may occur for the scalar modes in a cosmological background, resulting in the instability of cosmological solutions. In particular, we show that a catastrophic instability develops during inflation within a period of time much shorter than the minimum required duration of inflation. As a result, the standard cosmological dynamics is not recovered. This raises the question of the viability of scalar-Gauss-Bonnet theories exhibiting scalarization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا