ﻻ يوجد ملخص باللغة العربية
We discuss the cosmological evolution of a braneworld in five dimensional Gauss-Bonnet gravity. Our discussion allows the fifth (bulk) dimension to be space-like as well as time-like. The resulting equations of motion have the form of a cubic equation in the (H^2,(rho+sigma)^2) plane, where sigma is the brane tension and rho is the matter density. This allows us to conduct a comprehensive pictorial analysis of cosmological evolution for the Gauss-Bonnet brane. The many interesting properties of this braneworld include the possibility of accelerated expansion at late times. For a finite region in parameter space the accelerated expansion can be phantom-like so that w < -1. At late times, this branch approaches de Sitter space (w = -1) and avoids the big-rip singularities usually present in phantom models. For a time-like extra dimension the Gauss-Bonnet brane can bounce and avoid the initial singularity.
We present results from a numerical study of spherical gravitational collapse in shift symmetric Einstein dilaton Gauss-Bonnet (EdGB) gravity. This modified gravity theory has a single coupling parameter that when zero reduces to general relativity (
We report on a numerical investigation of the stability of scalarized black holes in Einstein dilaton Gauss-Bonnet (EdGB) gravity in the full dynamical theory, though restricted to spherical symmetry. We find evidence that for sufficiently small curv
We develop a theoretical framework to study slowly rotating compact stars in a rather general class of alternative theories of gravity, with the ultimate goal of investigating constraints on alternative theories from electromagnetic and gravitational
The current trend concerning dense matter physics at sufficiently high densities and low temperatures is expected to behave as a degenerate Fermi gas of quarks forming Cooper pairs, namely a color superconductor, in the core of compact objects. In th
In this brief report, we investigate the existence of 4-dimensional static spherically symmetric black holes (BHs) in the Einstein-complex-scalar-Gauss-Bonnet (EcsGB) gravity with an arbitrary potential $V(phi)$ and a coupling $f(phi)$ between the sc