ترغب بنشر مسار تعليمي؟ اضغط هنا

Many-body quantum chaos: Analytic connection to random matrix theory

378   0   0.0 ( 0 )
 نشر من قبل Tomaz Prosen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A key goal of quantum chaos is to establish a relationship between widely observed universal spectral fluctuations of clean quantum systems and random matrix theory (RMT). For single particle systems with fully chaotic classical counterparts, the problem has been partly solved by Berry (1985) within the so-called diagonal approximation of semiclassical periodic-orbit sums. Derivation of the full RMT spectral form factor $K(t)$ from semiclassics has been completed only much later in a tour de force by Mueller et al (2004). In recent years, the questions of long-time dynamics at high energies, for which the full many-body energy spectrum becomes relevant, are coming at the forefront even for simple many-body quantum systems, such as locally interacting spin chains. Such systems display two universal types of behaviour which are termed as `many-body localized phase and `ergodic phase. In the ergodic phase, the spectral fluctuations are excellently described by RMT, even for very simple interactions and in the absence of any external source of disorder. Here we provide the first theoretical explanation for these observations. We compute $K(t)$ explicitly in the leading two orders in $t$ and show its agreement with RMT for non-integrable, time-reversal invariant many-body systems without classical counterparts, a generic example of which are Ising spin 1/2 models in a periodically kicking transverse field.



قيم البحث

اقرأ أيضاً

The out-of-time-ordered correlators (OTOCs) have been proposed and widely used recently as a tool to define and describe many-body quantum chaos. Here, we develop the Keldysh non-linear sigma model technique to calculate these correlators in interact ing disordered metals. In particular, we focus on the regularized and unregularized OTOCs, defined as $Tr[sqrt{rho} A(t) sqrt{rho} A^dagger(t)]$ and $Tr[rho A(t)A^dagger(t)]$ respectively (where $A(t)$ is the anti-commutator of fermion field operators and $rho$ is the thermal density matrix). The calculation of the rate of OTOCs exponential growth is reminiscent to that of the dephasing rate in interacting metals, but here it involves two replicas of the system (two worlds). The intra-world contributions reproduce the dephasing (that would correspond to a decay of the correlator), while the inter-world terms provide a term of the opposite sign that exceeds dephasing. Consequently, both regularized and unregularized OTOCs grow exponentially in time, but surprisingly we find that the corresponding many-body Lyapunov exponents are different. For the regularized correlator, we reproduce an earlier perturbation theory result for the Lyapunov exponent that satisfies the Maldacena-Shenker-Stanford bound. However, the Lyapunov exponent of the unregularized correlator parametrically exceeds the bound. We argue that the latter is not a reliable indicator of many body quantum chaos as it contains additional contributions from elastic scattering events due to virtual processes that should not contribute to many-body chaos. These results bring up an important general question of the physical meaning of the OTOCs often used in calculations and proofs. We briefly discuss possible connections of the OTOCs to observables in quantum interference effects and level statistics via a many-body analogue of the Bohigas-Giannoni-Schmit conjecture.
The collective and quantum behavior of many-body systems may be harnessed to achieve fast charging of energy storage devices, which have been recently dubbed quantum batteries. In this paper, we present an extensive numerical analysis of energy flow in a quantum battery described by a disordered quantum Ising chain Hamiltonian, whose equilibrium phase diagram presents many-body localized (MBL), Anderson localized (AL), and ergodic phases. We demonstrate that i) the low amount of entanglement of the MBL phase guarantees much better work extraction capabilities than the ergodic phase and ii) interactions suppress temporal energy fluctuations in comparison with those of the non-interacting AL phase. Finally, we show that the statistical distribution of values of the optimal charging time is a clear-cut diagnostic tool of the MBL phase.
151 - Zhiyuan Yao , Lei Pan , Shang Liu 2021
In this letter, we study the PXP Hamiltonian with an external magnetic field that exhibits both quantum scar states and quantum criticality. It is known that this model hosts a series of quantum many-body scar states violating quantum thermalization at zero magnetic field, and it also exhibits an Ising quantum phase transition driven by finite magnetic field. Although the former involves the properties of generic excited states and the latter concerns the low-energy physics, we discover two surprising connections between them, inspired by the observation that both states possess log-volume law entanglement entropies. First, we show that the quantum many-body scar states can be tracked to a set of quantum critical states, whose nature can be understood as pair-wisely occupied Fermi sea states. Second, we show that the partial violation of quantum thermalization diminishes in the quantum critical regime. We envision that these connections can be extended to general situations and readily verified in existing cold atom experimental platforms.
In this article, using the principles of Random Matrix Theory (RMT), we give a measure of quantum chaos by quantifying Spectral From Factor (SFF) appearing from the computation of two-point Out of Time Order Correlation function (OTOC) expressed in t erms of square of the commutator bracket of quantum operators which are separated in time. We also provide a strict model independent bound on the measure of quantum chaos, $-1/N(1-1/pi)leq {bf SFF}leq 0$ and $0leq {bf SFF}leq 1/pi N$, valid for thermal systems with a large and small number of degrees of freedom respectively. Based on the appropriate physical arguments we give a precise mathematical derivation to establish this alternative strict bound of quantum chaos.
The spectral form factor (SFF), characterizing statistics of energy eigenvalues, is a key diagnostic of many-body quantum chaos. In addition, partial spectral form factors (pSFFs) can be defined which refer to subsystems of the many-body system. They provide unique insights into energy eigenstate statistics of many-body systems, as we show in an analysis on the basis of random matrix theory and of the eigenstate thermalization hypothesis. We propose a protocol which allows the measurement of SFF and pSFFs in quantum many-body spin models, within the framework of randomized measurements. Aimed to probe dynamical properties of quantum many-body systems, our scheme employs statistical correlations of local random operations which are applied at different times in a single experiment. Our protocol provides a unified testbed to probe many-body quantum chaotic behavior, thermalization and many-body localization in closed quantum systems which we illustrate with simulations for Hamiltonian and Floquet many-body spin-systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا