ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Many-Body Scars and Quantum Criticality

152   0   0.0 ( 0 )
 نشر من قبل Zhiyuan Yao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter, we study the PXP Hamiltonian with an external magnetic field that exhibits both quantum scar states and quantum criticality. It is known that this model hosts a series of quantum many-body scar states violating quantum thermalization at zero magnetic field, and it also exhibits an Ising quantum phase transition driven by finite magnetic field. Although the former involves the properties of generic excited states and the latter concerns the low-energy physics, we discover two surprising connections between them, inspired by the observation that both states possess log-volume law entanglement entropies. First, we show that the quantum many-body scar states can be tracked to a set of quantum critical states, whose nature can be understood as pair-wisely occupied Fermi sea states. Second, we show that the partial violation of quantum thermalization diminishes in the quantum critical regime. We envision that these connections can be extended to general situations and readily verified in existing cold atom experimental platforms.



قيم البحث

اقرأ أيضاً

We study weak ergodicity breaking in a one-dimensional, nonintegrable spin-1 XY model. We construct for it an exact, highly excited eigenstate, which despite its large energy density, can be represented analytically by a finite bond-dimension matrix product state (MPS) with area-law entanglement. Upon a quench to a finite Zeeman field, the state undergoes periodic dynamics with perfect many-body revivals, in stark contrast to other generic initial states which instead rapidly thermalize. This dynamics can be completely understood in terms of the evolution of entangled virtual spin-1/2 degrees of freedom, which in turn underpin the presence of an extensive tower of strong-eigenstate thermalization hypothesis (ETH)-violating many-body eigenstates. The resulting quantum many-body scars are therefore of novel origin. Our results provide important analytical insights into the nature and entanglement structure of quantum many-body scars.
Quantum many-body systems exhibit diverse phases characterized by various types of correlations. One aspect of quantum correlations is whether a quantum phase is gapless or gapped, and there are already well-developed tools to probe these correlation s. Another aspect is whether a quantum phase possesses a well-defined quasi-particle description or not, and the experimental method sensitive to this is still less developed. Here we present a protocol probing many-body correlations by time-dependently ramping a parameter in Hamiltonians to the same target value with variable velocities. The first-order correction beyond the adiabatic limit due to the finite ramping velocity is universal and path-independent, and reveals many-body correlations of the equilibrium phases at the target values. We term this method as the non-adiabatic linear response, and experimentally demonstrate it in studying the Bose-Hubbard model in ultracold-atom platforms. It is shown both theoretically and experimentally that this non-adiabatic linear response is significant in the quantum critical regime without well-defined quasi-particles, and is vanishingly small deeply in both superfluid and Mott insulators with well-defined quasi-particles.
Certain wave functions of non-interacting quantum chaotic systems can exhibit scars in the fabric of their real-space density profile. Quantum scarred wave functions concentrate in the vicinity of unstable periodic classical trajectories. We introduc e the notion of many-body quantum scars which reflect the existence of a subset of special many-body eigenstates concentrated in certain parts of the Hilbert space. We demonstrate the existence of scars in the Fibonacci chain -- the one- dimensional model with a constrained local Hilbert space realized in the 51 Rydberg atom quantum simulator [H. Bernien et al., arXiv:1707.04344]. The quantum scarred eigenstates are embedded throughout the thermalizing many-body spectrum, but surprisingly lead to direct experimental signatures such as robust oscillations following a quench from a charge-density wave state found in experiment. We develop a model based on a single particle hopping on the Hilbert space graph, which quantitatively captures the scarred wave functions up to large systems of L = 32 atoms. Our results suggest that scarred many-body bands give rise to a new universality class of quantum dynamics, which opens up opportunities for creating and manipulating novel states with long-lived coherence in systems that are now amenable to experimental study.
The collective and quantum behavior of many-body systems may be harnessed to achieve fast charging of energy storage devices, which have been recently dubbed quantum batteries. In this paper, we present an extensive numerical analysis of energy flow in a quantum battery described by a disordered quantum Ising chain Hamiltonian, whose equilibrium phase diagram presents many-body localized (MBL), Anderson localized (AL), and ergodic phases. We demonstrate that i) the low amount of entanglement of the MBL phase guarantees much better work extraction capabilities than the ergodic phase and ii) interactions suppress temporal energy fluctuations in comparison with those of the non-interacting AL phase. Finally, we show that the statistical distribution of values of the optimal charging time is a clear-cut diagnostic tool of the MBL phase.
Environmental interaction is a fundamental consideration in any controlled quantum system. While interaction with a dissipative bath can lead to decoherence, it can also provide desirable emergent effects including induced spin-spin correlations. In this paper we show that under quite general conditions, a dissipative bosonic bath can induce a long-range ordered phase, without the inclusion of any additional direct spin-spin couplings. Through a quantum-to-classical mapping and classical Monte Carlo simulation, we investigate the $T=0$ quantum phase transition of an Ising chain embedded in a bosonic bath with Ohmic dissipation. We show that the quantum critical point is continuous, Lorentz invariant with a dynamical critical exponent $z=1.07(9)$, has correlation length exponent $ u=0.80(5)$, and anomalous exponent $eta=1.02(6)$, thus the universality class distinct from the previously studied limiting cases. The implications of our results on experiments in ultracold atomic mixtures and qubit chains in dissipative environments are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا