ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear sigma model approach to many-body quantum chaos: Regularized and unregularized out-of-time-ordered correlators

106   0   0.0 ( 0 )
 نشر من قبل Yunxiang Liao
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The out-of-time-ordered correlators (OTOCs) have been proposed and widely used recently as a tool to define and describe many-body quantum chaos. Here, we develop the Keldysh non-linear sigma model technique to calculate these correlators in interacting disordered metals. In particular, we focus on the regularized and unregularized OTOCs, defined as $Tr[sqrt{rho} A(t) sqrt{rho} A^dagger(t)]$ and $Tr[rho A(t)A^dagger(t)]$ respectively (where $A(t)$ is the anti-commutator of fermion field operators and $rho$ is the thermal density matrix). The calculation of the rate of OTOCs exponential growth is reminiscent to that of the dephasing rate in interacting metals, but here it involves two replicas of the system (two worlds). The intra-world contributions reproduce the dephasing (that would correspond to a decay of the correlator), while the inter-world terms provide a term of the opposite sign that exceeds dephasing. Consequently, both regularized and unregularized OTOCs grow exponentially in time, but surprisingly we find that the corresponding many-body Lyapunov exponents are different. For the regularized correlator, we reproduce an earlier perturbation theory result for the Lyapunov exponent that satisfies the Maldacena-Shenker-Stanford bound. However, the Lyapunov exponent of the unregularized correlator parametrically exceeds the bound. We argue that the latter is not a reliable indicator of many body quantum chaos as it contains additional contributions from elastic scattering events due to virtual processes that should not contribute to many-body chaos. These results bring up an important general question of the physical meaning of the OTOCs often used in calculations and proofs. We briefly discuss possible connections of the OTOCs to observables in quantum interference effects and level statistics via a many-body analogue of the Bohigas-Giannoni-Schmit conjecture.



قيم البحث

اقرأ أيضاً

Polynomially filtered exact diagonalization method (POLFED) for large sparse matrices is introduced. The algorithm finds an optimal basis of a subspace spanned by eigenvectors with eigenvalues close to a specified energy target by a spectral transfor mation using a high order polynomial of the matrix. The memory requirements scale better with system size than in the state-of-the-art shift-invert approach. The potential of POLFED is demonstrated examining many-body localization transition in 1D interacting quantum spin-1/2 chains. We investigate the disorder strength and system size scaling of Thouless time. System size dependence of bipartite entanglement entropy and of the gap ratio highlights the importance of finite-size effects in the system. We discuss possible scenarios regarding the many-body localization transition obtaining estimates for the critical disorder strength.
Spectral statistics of disordered systems encode Thouless and Heisenberg time scales whose ratio determines whether the system is chaotic or localized. Identifying similarities between system size and disorder strength scaling of Thouless time for di sordered quantum many-body systems with results for 3D and 5D Anderson models, we argue that the two-parameter scaling breaks down in the vicinity of the transition to the localized phase signalling subdiffusive dynamics.
64 - Kazue Matsuyama 2020
In this work we report on a loss of ergodicity in a simple hopping model, motivated by the Hubbard Hamiltonian, of a many body quantum system at zero temperature, quantized in Euclidean time. We show that this quantum system may lose ergodicity at hi gh densities on a large lattice, as a result of both Pauli exclusion and strong Coulomb repulsion. In particular we study particle hopping susceptibilities and the tendency towards particle localization. It is found that the appearance and existence of quantum phase transitions in this model, in the case of high density and strong Coulomb repulsion, depends on the starting configuration of particle trajectories in the numerical simulation. We argue that this breakdown may be the Euclidean time version of a breakdown of the eigenstate thermalization hypothesis in real time quantization.
Chaotic dynamics in quantum many-body systems scrambles local information so that at late times it can no longer be accessed locally. This is reflected quantitatively in the out-of-time-ordered correlator of local operators, which is expected to deca y to zero with time. However, for systems of finite size, out-of-time-ordered correlators do not decay exactly to zero and in this paper we show that the residual value can provide useful insights into the chaotic dynamics. When energy is conserved, the late-time saturation value of the out-of-time-ordered correlator of generic traceless local operators scales as an inverse polynomial in the system size. This is in contrast to the inverse exponential scaling expected for chaotic dynamics without energy conservation. We provide both analytical arguments and numerical simulations to support this conclusion.
A key goal of quantum chaos is to establish a relationship between widely observed universal spectral fluctuations of clean quantum systems and random matrix theory (RMT). For single particle systems with fully chaotic classical counterparts, the pro blem has been partly solved by Berry (1985) within the so-called diagonal approximation of semiclassical periodic-orbit sums. Derivation of the full RMT spectral form factor $K(t)$ from semiclassics has been completed only much later in a tour de force by Mueller et al (2004). In recent years, the questions of long-time dynamics at high energies, for which the full many-body energy spectrum becomes relevant, are coming at the forefront even for simple many-body quantum systems, such as locally interacting spin chains. Such systems display two universal types of behaviour which are termed as `many-body localized phase and `ergodic phase. In the ergodic phase, the spectral fluctuations are excellently described by RMT, even for very simple interactions and in the absence of any external source of disorder. Here we provide the first theoretical explanation for these observations. We compute $K(t)$ explicitly in the leading two orders in $t$ and show its agreement with RMT for non-integrable, time-reversal invariant many-body systems without classical counterparts, a generic example of which are Ising spin 1/2 models in a periodically kicking transverse field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا