ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing many-body quantum chaos with quantum simulators

98   0   0.0 ( 0 )
 نشر من قبل Lata Joshi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spectral form factor (SFF), characterizing statistics of energy eigenvalues, is a key diagnostic of many-body quantum chaos. In addition, partial spectral form factors (pSFFs) can be defined which refer to subsystems of the many-body system. They provide unique insights into energy eigenstate statistics of many-body systems, as we show in an analysis on the basis of random matrix theory and of the eigenstate thermalization hypothesis. We propose a protocol which allows the measurement of SFF and pSFFs in quantum many-body spin models, within the framework of randomized measurements. Aimed to probe dynamical properties of quantum many-body systems, our scheme employs statistical correlations of local random operations which are applied at different times in a single experiment. Our protocol provides a unified testbed to probe many-body quantum chaotic behavior, thermalization and many-body localization in closed quantum systems which we illustrate with simulations for Hamiltonian and Floquet many-body spin-systems.



قيم البحث

اقرأ أيضاً

One of the key tasks in physics is to perform measurements in order to determine the state of a system. Often, measurements are aimed at determining the values of physical parameters, but one can also ask simpler questions, such as is the system in s tate A or state B?. In quantum mechanics, the latter type of measurements can be studied and optimized using the framework of quantum hypothesis testing. In many cases one can explicitly find the optimal measurement in the limit where one has simultaneous access to a large number $n$ of identical copies of the system, and estimate the expected error as $n$ becomes large. Interestingly, error estimates turn out to involve various quantum information theoretic quantities such as relative entropy, thereby giving these quantities operational meaning. In this paper we consider the application of quantum hypothesis testing to quantum many-body systems and quantum field theory. We review some of the necessary background material, and study in some detail the situation where the two states one wants to distinguish are parametrically close. The relevant error estimates involve quantities such as the variance of relative entropy, for which we prove a new inequality. We explore the optimal measurement strategy for spin chains and two-dimensional conformal field theory, focusing on the task of distinguishing reduced density matrices of subsystems. The optimal strategy turns out to be somewhat cumbersome to implement in practice, and we discuss a possible alternative strategy and the corresponding errors.
84 - Chushun Tian , Kun Yang , 2016
A profound quest of statistical mechanics is the origin of irreversibility - the arrow of time. New stimulants have been provided, thanks to unprecedented degree of control reached in experiments with isolated quantum systems and rapid theoretical de velopments of manybody localization in disordered interacting systems. The proposal of (many-body) eigenstate thermalization (ET) for these systems reinforces the common belief that either interaction or extrinsic randomness is required for thermalization. Here, we unveil a quantum thermalization mechanism challenging this belief. We find that, provided one-body quantum chaos is present, as a pure many-body state evolves the arrow of time can emerge, even without interaction or randomness. In times much larger than the Ehrenfest time that signals the breakdown of quantum-classical correspondence, quantum chaotic motion leads to thermal [Fermi-Dirac (FD) or Bose-Einstein (BE)] distributions and thermodynamics in individual eigenstates. Our findings lay dynamical foundation of statistical mechanics and thermodynamics of isolated quantum systems.
149 - Bin Yan , Wissam Chemissany 2020
This article tackles a fundamental long-standing problem in quantum chaos, namely, whether quantum chaotic systems can exhibit sensitivity to initial conditions, in a form that directly generalizes the notion of classical chaos in phase space. We dev elop a linear response theory for complexity, and demonstrate that the complexity can exhibit exponential sensitivity in response to perturbations of initial conditions for chaotic systems. Two immediate significant results follows: i) the complexity linear response matrix gives rise to a spectrum that fully recovers the Lyapunov exponents in the classical limit, and ii) the linear response of complexity is given by the out-of-time order correlators.
A key goal of quantum chaos is to establish a relationship between widely observed universal spectral fluctuations of clean quantum systems and random matrix theory (RMT). For single particle systems with fully chaotic classical counterparts, the pro blem has been partly solved by Berry (1985) within the so-called diagonal approximation of semiclassical periodic-orbit sums. Derivation of the full RMT spectral form factor $K(t)$ from semiclassics has been completed only much later in a tour de force by Mueller et al (2004). In recent years, the questions of long-time dynamics at high energies, for which the full many-body energy spectrum becomes relevant, are coming at the forefront even for simple many-body quantum systems, such as locally interacting spin chains. Such systems display two universal types of behaviour which are termed as `many-body localized phase and `ergodic phase. In the ergodic phase, the spectral fluctuations are excellently described by RMT, even for very simple interactions and in the absence of any external source of disorder. Here we provide the first theoretical explanation for these observations. We compute $K(t)$ explicitly in the leading two orders in $t$ and show its agreement with RMT for non-integrable, time-reversal invariant many-body systems without classical counterparts, a generic example of which are Ising spin 1/2 models in a periodically kicking transverse field.
Chaotic quantum many-body dynamics typically lead to relaxation of local observables. In this process, known as quantum thermalization, a subregion reaches a thermal state due to quantum correlations with the remainder of the system, which acts as an intrinsic bath. While the bath is generally assumed to be unobserved, modern quantum science experiments have the ability to track both subsystem and bath at a microscopic level. Here, by utilizing this ability, we discover that measurement results associated with small subsystems exhibit universal random statistics following chaotic quantum many-body dynamics, a phenomenon beyond the standard paradigm of quantum thermalization. We explain these observations with an ensemble of pure states, defined via correlations with the bath, that dynamically acquires a close to random distribution. Such random ensembles play an important role in quantum information science, associated with quantum supremacy tests and device verification, but typically require highly-engineered, time-dependent control for their preparation. In contrast, our approach uncovers random ensembles naturally emerging from evolution with a time-independent Hamiltonian. As an application of this emergent randomness, we develop a benchmarking protocol which estimates the many-body fidelity during generic chaotic evolution and demonstrate it using our Rydberg quantum simulator. Our work has wide ranging implications for the understanding of quantum many-body chaos and thermalization in terms of emergent randomness and at the same time paves the way for applications of this concept in a much wider context.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا