ترغب بنشر مسار تعليمي؟ اضغط هنا

Episodic memory for continual model learning

89   0   0.0 ( 0 )
 نشر من قبل David Nagy
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

Both the human brain and artificial learning agents operating in real-world or comparably complex environments are faced with the challenge of online model selection. In principle this challenge can be overcome: hierarchical Bayesian inference provides a principled method for model selection and it converges on the same posterior for both off-line (i.e. batch) and online learning. However, maintaining a parameter posterior for each model in parallel has in general an even higher memory cost than storing the entire data set and is consequently clearly unfeasible. Alternatively, maintaining only a limited set of models in memory could limit memory requirements. However, sufficient statistics for one model will usually be insufficient for fitting a different kind of model, meaning that the agent loses information with each model change. We propose that episodic memory can circumvent the challenge of limited memory-capacity online model selection by retaining a selected subset of data points. We design a method to compute the quantities necessary for model selection even when the data is discarded and only statistics of one (or few) learnt models are available. We demonstrate on a simple model that a limited-sized episodic memory buffer, when the content is optimised to retain data with statistics not matching the current representation, can resolve the fundamental challenge of online model selection.

قيم البحث

اقرأ أيضاً

Current deep neural networks can achieve remarkable performance on a single task. However, when the deep neural network is continually trained on a sequence of tasks, it seems to gradually forget the previous learned knowledge. This phenomenon is ref erred to as textit{catastrophic forgetting} and motivates the field called lifelong learning. Recently, episodic memory based approaches such as GEM cite{lopez2017gradient} and A-GEM cite{chaudhry2018efficient} have shown remarkable performance. In this paper, we provide the first unified view of episodic memory based approaches from an optimizations perspective. This view leads to two improved schemes for episodic memory based lifelong learning, called MEGA-I and MEGA-II. MEGA-I and MEGA-II modulate the balance between old tasks and the new task by integrating the current gradient with the gradient computed on the episodic memory. Notably, we show that GEM and A-GEM are degenerate cases of MEGA-I and MEGA-II which consistently put the same emphasis on the current task, regardless of how the loss changes over time. Our proposed schemes address this issue by using novel loss-balancing updating rules, which drastically improve the performance over GEM and A-GEM. Extensive experimental results show that the proposed schemes significantly advance the state-of-the-art on four commonly used lifelong learning benchmarks, reducing the error by up to 18%.
Episodic memory-based methods can rapidly latch onto past successful strategies by a non-parametric memory and improve sample efficiency of traditional reinforcement learning. However, little effort is put into the continuous domain, where a state is never visited twice, and previous episodic methods fail to efficiently aggregate experience across trajectories. To address this problem, we propose Generalizable Episodic Memory (GEM), which effectively organizes the state-action values of episodic memory in a generalizable manner and supports implicit planning on memorized trajectories. GEM utilizes a double estimator to reduce the overestimation bias induced by value propagation in the planning process. Empirical evaluation shows that our method significantly outperforms existing trajectory-based methods on various MuJoCo continuous control tasks. To further show the general applicability, we evaluate our method on Atari games with discrete action space, which also shows a significant improvement over baseline algorithms.
116 - Stella Ho , Ming Liu , Lan Du 2021
Continual learning (CL) refers to a machine learning paradigm that using only a small account of training samples and previously learned knowledge to enhance learning performance. CL models learn tasks from various domains in a sequential manner. The major difficulty in CL is catastrophic forgetting of previously learned tasks, caused by shifts in data distributions. The existing CL models often employ a replay-based approach to diminish catastrophic forgetting. Most CL models stochastically select previously seen samples to retain learned knowledge. However, occupied memory size keeps enlarging along with accumulating learned tasks. Hereby, we propose a memory-efficient CL method. We devise a dynamic prototypes-guided memory replay module, incorporating it into an online meta-learning model. We conduct extensive experiments on text classification and additionally investigate the effect of training set orders on CL model performance. The experimental results testify the superiority of our method in alleviating catastrophic forgetting and enabling efficient knowledge transfer.
In this paper, we propose a continual learning (CL) technique that is beneficial to sequential task learners by improving their retained accuracy and reducing catastrophic forgetting. The principal target of our approach is the automatic extraction o f modular parts of the neural network and then estimating the relatedness between the tasks given these modular components. This technique is applicable to different families of CL methods such as regularization-based (e.g., the Elastic Weight Consolidation) or the rehearsal-based (e.g., the Gradient Episodic Memory) approaches where episodic memory is needed. Empirical results demonstrate remarkable performance gain (in terms of robustness to forgetting) for methods such as EWC and GEM based on our technique, especially when the memory budget is very limited.
We introduce a lifelong language learning setup where a model needs to learn from a stream of text examples without any dataset identifier. We propose an episodic memory model that performs sparse experience replay and local adaptation to mitigate ca tastrophic forgetting in this setup. Experiments on text classification and question answering demonstrate the complementary benefits of sparse experience replay and local adaptation to allow the model to continuously learn from new datasets. We also show that the space complexity of the episodic memory module can be reduced significantly (~50-90%) by randomly choosing which examples to store in memory with a minimal decrease in performance. We consider an episodic memory component as a crucial building block of general linguistic intelligence and see our model as a first step in that direction.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا