ترغب بنشر مسار تعليمي؟ اضغط هنا

Crossmodal Attentive Skill Learner

62   0   0.0 ( 0 )
 نشر من قبل Shayegan Omidshafiei
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents the Crossmodal Attentive Skill Learner (CASL), integrated with the recently-introduced Asynchronous Advantage Option-Critic (A2OC) architecture [Harb et al., 2017] to enable hierarchical reinforcement learning across multiple sensory inputs. We provide concrete examples where the approach not only improves performance in a single task, but accelerates transfer to new tasks. We demonstrate the attention mechanism anticipates and identifies useful latent features, while filtering irrelevant sensor modalities during execution. We modify the Arcade Learning Environment [Bellemare et al., 2013] to support audio queries, and conduct evaluations of crossmodal learning in the Atari 2600 game Amidar. Finally, building on the recent work of Babaeizadeh et al. [2017], we open-source a fast hybrid CPU-GPU implementation of CASL.



قيم البحث

اقرأ أيضاً

Pre-training Reinforcement Learning agents in a task-agnostic manner has shown promising results. However, previous works still struggle in learning and discovering meaningful skills in high-dimensional state-spaces, such as pixel-spaces. We approach the problem by leveraging unsupervised skill discovery and self-supervised learning of state representations. In our work, we learn a compact latent representation by making use of variational and contrastive techniques. We demonstrate that both enable RL agents to learn a set of basic navigation skills by maximizing an information theoretic objective. We assess our method in Minecraft 3D pixel maps with different complexities. Our results show that representations and conditioned policies learned from pixels are enough for toy examples, but do not scale to realistic and complex maps. To overcome these limitations, we explore alternative input observations such as the relative position of the agent along with the raw pixels.
We present a novel deep recurrent neural network architecture that learns to build implicit plans in an end-to-end manner by purely interacting with an environment in reinforcement learning setting. The network builds an internal plan, which is conti nuously updated upon observation of the next input from the environment. It can also partition this internal representation into contiguous sub- sequences by learning for how long the plan can be committed to - i.e. followed without re-planing. Combining these properties, the proposed model, dubbed STRategic Attentive Writer (STRAW) can learn high-level, temporally abstracted macro- actions of varying lengths that are solely learnt from data without any prior information. These macro-actions enable both structured exploration and economic computation. We experimentally demonstrate that STRAW delivers strong improvements on several ATARI games by employing temporally extended planning strategies (e.g. Ms. Pacman and Frostbite). It is at the same time a general algorithm that can be applied on any sequence data. To that end, we also show that when trained on text prediction task, STRAW naturally predicts frequent n-grams (instead of macro-actions), demonstrating the generality of the approach.
Aiming at expanding few-shot relations coverage in knowledge graphs (KGs), few-shot knowledge graph completion (FKGC) has recently gained more research interests. Some existing models employ a few-shot relations multi-hop neighbor information to enha nce its semantic representation. However, noise neighbor information might be amplified when the neighborhood is excessively sparse and no neighbor is available to represent the few-shot relation. Moreover, modeling and inferring complex relations of one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N) by previous knowledge graph completion approaches requires high model complexity and a large amount of training instances. Thus, inferring complex relations in the few-shot scenario is difficult for FKGC models due to limited training instances. In this paper, we propose a few-shot relational learning with global-local framework to address the above issues. At the global stage, a novel gated and attentive neighbor aggregator is built for accurately integrating the semantics of a few-shot relations neighborhood, which helps filtering the noise neighbors even if a KG contains extremely sparse neighborhoods. For the local stage, a meta-learning based TransH (MTransH) method is designed to model complex relations and train our model in a few-shot learning fashion. Extensive experiments show that our model outperforms the state-of-the-art FKGC approaches on the frequently-used benchmark datasets NELL-One and Wiki-One. Compared with the strong baseline model MetaR, our model achieves 5-shot FKGC performance improvements of 8.0% on NELL-One and 2.8% on Wiki-One by the metric Hits@10.
In this article we consider the Conditional Super Learner (CSL), an algorithm which selects the best model candidate from a library conditional on the covariates. The CSL expands the idea of using cross-validation to select the best model and merges it with meta learning. Here we propose a specific algorithm that finds a local minimum to the problem posed, proof that it converges at a rate faster than $O_p(n^{-1/4})$ and offers extensive empirical evidence that it is an excellent candidate to substitute stacking or for the analysis of Hierarchical problems.
Factorization methods for recommender systems tend to represent users as a single latent vector. However, user behavior and interests may change in the context of the recommendations that are presented to the user. For example, in the case of movie r ecommendations, it is usually true that earlier user data is less informative than more recent data. However, it is possible that a certain early movie may become suddenly more relevant in the presence of a popular sequel movie. This is just a single example of a variety of possible dynamically altering user interests in the presence of a potential new recommendation. In this work, we present Attentive Item2vec (AI2V) - a novel attentive version of Item2vec (I2V). AI2V employs a context-target attention mechanism in order to learn and capture different characteristics of user historical behavior (context) with respect to a potential recommended item (target). The attentive context-target mechanism enables a final neural attentive user representation. We demonstrate the effectiveness of AI2V on several datasets, where it is shown to outperform other baselines.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا