ترغب بنشر مسار تعليمي؟ اضغط هنا

Relational Learning with Gated and Attentive Neighbor Aggregator for Few-Shot Knowledge Graph Completion

108   0   0.0 ( 0 )
 نشر من قبل Guanglin Niu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Aiming at expanding few-shot relations coverage in knowledge graphs (KGs), few-shot knowledge graph completion (FKGC) has recently gained more research interests. Some existing models employ a few-shot relations multi-hop neighbor information to enhance its semantic representation. However, noise neighbor information might be amplified when the neighborhood is excessively sparse and no neighbor is available to represent the few-shot relation. Moreover, modeling and inferring complex relations of one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N) by previous knowledge graph completion approaches requires high model complexity and a large amount of training instances. Thus, inferring complex relations in the few-shot scenario is difficult for FKGC models due to limited training instances. In this paper, we propose a few-shot relational learning with global-local framework to address the above issues. At the global stage, a novel gated and attentive neighbor aggregator is built for accurately integrating the semantics of a few-shot relations neighborhood, which helps filtering the noise neighbors even if a KG contains extremely sparse neighborhoods. For the local stage, a meta-learning based TransH (MTransH) method is designed to model complex relations and train our model in a few-shot learning fashion. Extensive experiments show that our model outperforms the state-of-the-art FKGC approaches on the frequently-used benchmark datasets NELL-One and Wiki-One. Compared with the strong baseline model MetaR, our model achieves 5-shot FKGC performance improvements of 8.0% on NELL-One and 2.8% on Wiki-One by the metric Hits@10.

قيم البحث

اقرأ أيضاً

Inferring new facts from existing knowledge graphs (KG) with explainable reasoning processes is a significant problem and has received much attention recently. However, few studies have focused on relation types unseen in the original KG, given only one or a few instances for training. To bridge this gap, we propose CogKR for one-shot KG reasoning. The one-shot relational learning problem is tackled through two modules: the summary module summarizes the underlying relationship of the given instances, based on which the reasoning module infers the correct answers. Motivated by the dual process theory in cognitive science, in the reasoning module, a cognitive graph is built by iteratively coordinating retrieval (System 1, collecting relevant evidence intuitively) and reasoning (System 2, conducting relational reasoning over collected information). The structural information offered by the cognitive graph enables our model to aggregate pieces of evidence from multiple reasoning paths and explain the reasoning process graphically. Experiments show that CogKR substantially outperforms previous state-of-the-art models on one-shot KG reasoning benchmarks, with relative improvements of 24.3%-29.7% on MRR. The source code is available at https://github.com/THUDM/CogKR.
135 - Cennet Oguz , Ngoc Thang Vu 2021
Metric-based learning is a well-known family of methods for few-shot learning, especially in computer vision. Recently, they have been used in many natural language processing applications but not for slot tagging. In this paper, we explore metric-ba sed learning methods in the slot tagging task and propose a novel metric-based learning architecture - Attentive Relational Network. Our proposed method extends relation networks, making them more suitable for natural language processing applications in general, by leveraging pretrained contextual embeddings such as ELMO and BERT and by using attention mechanism. The results on SNIPS data show that our proposed method outperforms other state-of-the-art metric-based learning methods.
Background Knowledge graphs (KGs), especially medical knowledge graphs, are often significantly incomplete, so it necessitating a demand for medical knowledge graph completion (MedKGC). MedKGC can find new facts based on the exited knowledge in the K Gs. The path-based knowledge reasoning algorithm is one of the most important approaches to this task. This type of method has received great attention in recent years because of its high performance and interpretability. In fact, traditional methods such as path ranking algorithm (PRA) take the paths between an entity pair as atomic features. However, the medical KGs are very sparse, which makes it difficult to model effective semantic representation for extremely sparse path features. The sparsity in the medical KGs is mainly reflected in the long-tailed distribution of entities and paths. Previous methods merely consider the context structure in the paths of the knowledge graph and ignore the textual semantics of the symbols in the path. Therefore, their performance cannot be further improved due to the two aspects of entity sparseness and path sparseness. To address the above issues, this paper proposes two novel path-based reasoning methods to solve the sparsity issues of entity and path respectively, which adopts the textual semantic information of entities and paths for MedKGC. By using the pre-trained model BERT, combining the textual semantic representations of the entities and the relationships, we model the task of symbolic reasoning in the medical KG as a numerical computing issue in textual semantic representation.
Few-shot learning is a challenging task, which aims to learn a classifier for novel classes with few examples. Pre-training based meta-learning methods effectively tackle the problem by pre-training a feature extractor and then fine-tuning it through the nearest centroid based meta-learning. However, results show that the fine-tuning step makes very marginal improvements. In this paper, 1) we figure out the key reason, i.e., in the pre-trained feature space, the base classes already form compact clusters while novel classes spread as groups with large variances, which implies that fine-tuning the feature extractor is less meaningful; 2) instead of fine-tuning the feature extractor, we focus on estimating more representative prototypes during meta-learning. Consequently, we propose a novel prototype completion based meta-learning framework. This framework first introduces primitive knowledge (i.e., class-level part or attribute annotations) and extracts representative attribute features as priors. Then, we design a prototype completion network to learn to complete prototypes with these priors. To avoid the prototype completion error caused by primitive knowledge noises or class differences, we further develop a Gaussian based prototype fusion strategy that combines the mean-based and completed prototypes by exploiting the unlabeled samples. Extensive experiments show that our method: (i) can obtain more accurate prototypes; (ii) outperforms state-of-the-art techniques by 2% - 9% in terms of classification accuracy. Our code is available online.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of e ntities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا