ﻻ يوجد ملخص باللغة العربية
Our purpose in this paper is (i) to introduce the concept of further generalized hybrid mappings (ii) to introduce the concept of common attractive points (CAP) (iii) to write and use Picard-Mann iterative process for two mappings. We approximate common attractive points of further generalized hybrid mappings by using iterative process due to Khan <cite>SHK</cite> generalized to the case of two mappings in Hilbert spaces without closedness assumption. Our results are generalizations and improvements of several results in the literature in different ways.
Conjugation, or Legendre transformation, is a basic tool in convex analysis, rational mechanics, economics and optimization. It maps a function on a linear topological space into another one, defined in the dual of the linear space by coupling these
We consider a class of generalized nonexpansive mappings introduced by Karapinar [5] and seen as a generalization of Suzuki (C)-condition. We prove some weak and strong convergence theorems for approximating fixed points of such mappings under suitab
We show that the typical nonexpansive mapping on a small enough subset of a CAT($kappa$)-space is a contraction in the sense of Rakotch. By typical we mean that the set of nonexpansive mapppings without this property is a $sigma$-porous set and there
We consider sequential iterative processes for the common fixed point problem of families of cutter operators on a Hilbert space. These are operators that have the property that, for any point xinH, the hyperplane through Tx whose normal is x-Tx alwa
String-averaging is an algorithmic structure used when handling a family of operators in situations where the algorithm at hand requires to employ the operators in a specific order. Sequential orderings are well-known and a simultaneous order means t