ترغب بنشر مسار تعليمي؟ اضغط هنا

Fixed Points of Generalized Conjugations

128   0   0.0 ( 0 )
 نشر من قبل B. Svaiter F.
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Conjugation, or Legendre transformation, is a basic tool in convex analysis, rational mechanics, economics and optimization. It maps a function on a linear topological space into another one, defined in the dual of the linear space by coupling these space by meas of the duality product. Generalized conjugation extends classical conjugation to any pair of domains, using an arbitrary coupling function between these spaces. This generalization of conjugation is now being widely used in optima transportation problems, variational analysis and also optimization. If the coupled spaces are equal, generalized conjugations define order reversing maps of a family of functions into itself. In this case, is natural to ask for the existence of fixed points of the conjugation, that is, functions which are equal to their (generalized) conjugateds. Here we prove that any generalized symmetric conjugation has fixed points. The basic tool of the proof is a variational principle involving the order reversing feature of the conjugation. As an application of this abstract result, we will extend to real linear topological spaces a fixed-point theorem for Fitzpatricks functions, previously proved in Banach spaces.

قيم البحث

اقرأ أيضاً

160 - Daniel Reem , Simeon Reich 2017
A well-known result says that the Euclidean unit ball is the unique fixed point of the polarity operator. This result implies that if, in $mathbb{R}^n$, the unit ball of some norm is equal to the unit ball of the dual norm, then the norm must be Eucl idean. Motivated by these results and by relatively recent results in convex analysis and convex geometry regarding various properties of order reversing operators, we consider, in a real Hilbert space setting, a more general fixed point equation in which the polarity operator is composed with a continuous invertible linear operator. We show that if the linear operator is positive definite, then the considered equation is uniquely solvable by an ellipsoid. Otherwise, the equation can have several (possibly infinitely many) solutions or no solution at all. Our analysis yields a few by-products of possible independent interest, among them results related to coercive bilinear forms (essentially a quantitative convex analytic converse to the celebrated Lax-Milgram theorem from partial differential equations) and a characterization of real Hilbertian spaces.
96 - B. F. Svaiter 2008
Any maximal monotone operator can be characterized by a convex function. The family of such convex functions is invariant under a transformation connected with the Fenchel-Legendre conjugation. We prove that there exist a convex representation of the operator which is a fixed point of this conjugation.
Our purpose in this paper is (i) to introduce the concept of further generalized hybrid mappings (ii) to introduce the concept of common attractive points (CAP) (iii) to write and use Picard-Mann iterative process for two mappings. We approximate com mon attractive points of further generalized hybrid mappings by using iterative process due to Khan <cite>SHK</cite> generalized to the case of two mappings in Hilbert spaces without closedness assumption. Our results are generalizations and improvements of several results in the literature in different ways.
97 - Daniel A. Ramras 2015
We give a new description of Rosenthals generalized homotopy fixed point spaces as homotopy limits over the orbit category. This is achieved using a simple categorical model for classifying spaces with respect to families of subgroups.
We show that the typical nonexpansive mapping on a small enough subset of a CAT($kappa$)-space is a contraction in the sense of Rakotch. By typical we mean that the set of nonexpansive mapppings without this property is a $sigma$-porous set and there fore also of the first Baire category. Moreover, we exhibit metric spaces where strict contractions are not dense in the space of nonexpansive mappings. In some of these cases we show that all continuous self-mappings have a fixed point nevertheless.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا