ﻻ يوجد ملخص باللغة العربية
We show that the typical nonexpansive mapping on a small enough subset of a CAT($kappa$)-space is a contraction in the sense of Rakotch. By typical we mean that the set of nonexpansive mapppings without this property is a $sigma$-porous set and therefore also of the first Baire category. Moreover, we exhibit metric spaces where strict contractions are not dense in the space of nonexpansive mappings. In some of these cases we show that all continuous self-mappings have a fixed point nevertheless.
In this paper, we first introduce an iterative process in modular function spaces and then extend the idea of a {lambda}-firmly nonexpansive mapping from Banach spaces to modular function spaces. We call such mappings as ({lambda},{rho})-firmly nonex
We consider a class of generalized nonexpansive mappings introduced by Karapinar [5] and seen as a generalization of Suzuki (C)-condition. We prove some weak and strong convergence theorems for approximating fixed points of such mappings under suitab
The problem of computing the smallest fixed point of an order-preserving map arises in the study of zero-sum positive stochastic games. It also arises in static analysis of programs by abstract interpretation. In this context, the discount rate may b
Conjugation, or Legendre transformation, is a basic tool in convex analysis, rational mechanics, economics and optimization. It maps a function on a linear topological space into another one, defined in the dual of the linear space by coupling these
We discuss two elementary constructions for covers with fixed ramification in positive characteristic. As an application, we compute the number of certain classes of covers between projective lines branched at 4 points and obtain information on the s