ترغب بنشر مسار تعليمي؟ اضغط هنا

String-Averaging Methods for Best Approximation to Common Fixed Point Sets of Operators: The Finite and Infinite Cases

65   0   0.0 ( 0 )
 نشر من قبل Yair Censor
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

String-averaging is an algorithmic structure used when handling a family of operators in situations where the algorithm at hand requires to employ the operators in a specific order. Sequential orderings are well-known and a simultaneous order means that all operators are used simultaneously (in parallel). String-averaging allows to use strings of indices, constructed by subsets of the index set of all operators, to apply the operators along these strings and then to combine their end-points in some agreed manner to yield the next iterate of the algorithm. String-averaging methods were discussed and used for solving the common fixed point problem or its important special case of the convex feasibility problem. In this paper we propose and investigate string-averaging methods for the problem of best approximation to the common fixed point set of a family of operators. This problem involves finding a point in the common fixed point set of a family of operators that is closest to a given point, called an anchor point. We construct string-averaging methods for solving the best approximation problem to the common fixed points set of either finite or infinite families of firmly nonexpansive operators in a real Hilbert space. We show that the simultaneous Halpern-Lions-Wittman-Bauschke algorithm, the Halpern-Wittman algorithm and the Combettes algorithm, which were not labeled as string-averaging methods, are actually special cases of these methods. Some of our string-averaging methods are labeled as static because they use a fixed pre-determined set of strings. Others are labeled as quasi-dynamic because they allow the choices of strings to vary, between iterations, in a specific manner and belong to a finite fixed pre-determined set of applicable strings.



قيم البحث

اقرأ أيضاً

Whitneys extension problem asks the following: Given a compact set $Esubsetmathbb{R}^n$ and a function $f:Eto mathbb{R}$, how can we tell whether there exists $Fin C^m(mathbb{R}^n)$ such that $F|_E=f$? A 2006 theorem of Charles Fefferman answers this question in its full generality. In this paper, we establish a version of this theorem adapted for variants of the Whitney extension problem, including nonnegative extensions and the smooth selection problems. Among other things, we generalize the results of Fefferman-Israel-Luli (2016) to the setting of infinite sets.
115 - Hakima Bouhadjera 2009
In this paper, we establish a common fixed point theorem for two pairs of occasionally weakly compatible single and set-valued maps satisfying a strict contractive condition in a metric space. Our result extends many results existing in the literatur e as those of Aliouche and Popa [15-20]. Also we establish another common fixed point theorem for four owc single and set-valued maps of Gregu% v{s} type which generalizes the results of Djoudi and Nisse, Pathak, Cho, Kang and Madharia and we end our work by giving a third theorem which extends the results given by Elamrani & Mehdaoui and Mbarki.
We establish two fixed point theorems for certain mappings of contractive type. The first result is concerned with the case where such mappings take a nonempty, closed subset of a complete metric space $X$ into $X$, and the second with an application of the continuation method to the case where they satisfy the Leray-Schauder boundary condition in Banach spaces.
116 - A. Kilicman , L.B. Mohammed 2017
The split common fixed point problems has found its applications in various branches of mathematics both pure and applied. It provides us a unified structure to study a large number of nonlinear mappings. Our interest here is to apply these mappings and propose some iterative methods for solving the split common fixed point problems and its variant forms, and we prove the convergence results of these algorithms. As a special case of the split common fixed problems, we consider the split common fixed point equality problems for the class of finite family of quasi-nonexpansive mappings. Furthermore, we consider another problem namely split feasibility and fixed point equality problems and suggest some new iterative methods and prove their convergence results for the class of quasi-nonexpansive mappings. Finally, as a special case of the split feasibility and fixed point equality problems, we consider the split feasibility and fixed point problems and propose Ishikawa-type extra-gradients algorithms for solving these split feasibility and fixed point problems for the class of quasi-nonexpansive mappings in Hilbert spaces. In the end, we prove the convergence results of the proposed algorithms. Results proved in this chapter continue to hold for different type of problems, such as; convex feasibility problem, split feasibility problem and multiple-set split feasibility problems.
In this paper we give exact values of the best $n$-term approximation widths of diagonal operators between $ell_p(mathbb{N})$ and $ell_q(mathbb{N})$ with $0<p,qleq infty$. The result will be applied to obtain the asymptotic constants of best $n$-term approximation widths of embeddings of function spaces with mixed smoothness by trigonometric system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا