ﻻ يوجد ملخص باللغة العربية
Person identification technology recognizes individuals by exploiting their unique, measurable physiological and behavioral characteristics. However, the state-of-the-art person identification systems have been shown to be vulnerable, e.g., contact lenses can trick iris recognition and fingerprint films can deceive fingerprint sensors. EEG (Electroencephalography)-based identification, which utilizes the users brainwave signals for identification and offers a more resilient solution, draw a lot of attention recently. However, the accuracy still requires improvement and very little work is focusing on the robustness and adaptability of the identification system. We propose MindID, an EEG-based biometric identification approach, achieves higher accuracy and better characteristics. At first, the EEG data patterns are analyzed and the results show that the Delta pattern contains the most distinctive information for user identification. Then the decomposed Delta pattern is fed into an attention-based Encoder-Decoder RNNs (Recurrent Neural Networks) structure which assigns varies attention weights to different EEG channels based on the channels importance. The discriminative representations learned from the attention-based RNN are used to recognize the user identification through a boosting classifier. The proposed approach is evaluated over 3 datasets (two local and one public). One local dataset (EID-M) is used for performance assessment and the result illustrate that our model achieves the accuracy of 0.982 which outperforms the baselines and the state-of-the-art. Another local dataset (EID-S) and a public dataset (EEG-S) are utilized to demonstrate the robustness and adaptability, respectively. The results indicate that the proposed approach has the potential to be largely deployment in practice environment.
Person re-identification (ReID) is to identify pedestrians observed from different camera views based on visual appearance. It is a challenging task due to large pose variations, complex background clutters and severe occlusions. Recently, human pose
With the increasing deployment of diverse positioning devices and location-based services, a huge amount of spatial and temporal information has been collected and accumulated as trajectory data. Among many applications, trajectory-based location pre
Person Re-Identification (ReID) is a challenging problem in many video analytics and surveillance applications, where a persons identity must be associated across a distributed non-overlapping network of cameras. Video-based person ReID has recently
Identity recognition plays an important role in ensuring security in our daily life. Biometric-based (especially activity-based) approaches are favored due to their fidelity, universality, and resilience. However, most existing machine learning-based
The auditory attention decoding (AAD) approach was proposed to determine the identity of the attended talker in a multi-talker scenario by analyzing electroencephalography (EEG) data. Although the linear model-based method has been widely used in AAD