ترغب بنشر مسار تعليمي؟ اضغط هنا

MindID: Person Identification from Brain Waves through Attention-based Recurrent Neural Network

114   0   0.0 ( 0 )
 نشر من قبل Xiang Zhang
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Person identification technology recognizes individuals by exploiting their unique, measurable physiological and behavioral characteristics. However, the state-of-the-art person identification systems have been shown to be vulnerable, e.g., contact lenses can trick iris recognition and fingerprint films can deceive fingerprint sensors. EEG (Electroencephalography)-based identification, which utilizes the users brainwave signals for identification and offers a more resilient solution, draw a lot of attention recently. However, the accuracy still requires improvement and very little work is focusing on the robustness and adaptability of the identification system. We propose MindID, an EEG-based biometric identification approach, achieves higher accuracy and better characteristics. At first, the EEG data patterns are analyzed and the results show that the Delta pattern contains the most distinctive information for user identification. Then the decomposed Delta pattern is fed into an attention-based Encoder-Decoder RNNs (Recurrent Neural Networks) structure which assigns varies attention weights to different EEG channels based on the channels importance. The discriminative representations learned from the attention-based RNN are used to recognize the user identification through a boosting classifier. The proposed approach is evaluated over 3 datasets (two local and one public). One local dataset (EID-M) is used for performance assessment and the result illustrate that our model achieves the accuracy of 0.982 which outperforms the baselines and the state-of-the-art. Another local dataset (EID-S) and a public dataset (EEG-S) are utilized to demonstrate the robustness and adaptability, respectively. The results indicate that the proposed approach has the potential to be largely deployment in practice environment.



قيم البحث

اقرأ أيضاً

112 - Jing Xu , Rui Zhao , Feng Zhu 2018
Person re-identification (ReID) is to identify pedestrians observed from different camera views based on visual appearance. It is a challenging task due to large pose variations, complex background clutters and severe occlusions. Recently, human pose estimation by predicting joint locations was largely improved in accuracy. It is reasonable to use pose estimation results for handling pose variations and background clutters, and such attempts have obtained great improvement in ReID performance. However, we argue that the pose information was not well utilized and hasnt yet been fully exploited for person ReID. In this work, we introduce a novel framework called Attention-Aware Compositional Network (AACN) for person ReID. AACN consists of two main components: Pose-guided Part Attention (PPA) and Attention-aware Feature Composition (AFC). PPA is learned and applied to mask out undesirable background features in pedestrian feature maps. Furthermore, pose-guided visibility scores are estimated for body parts to deal with part occlusion in the proposed AFC module. Extensive experiments with ablation analysis show the effectiveness of our method, and state-of-the-art results are achieved on several public datasets, including Market-1501, CUHK03, CUHK01, SenseReID, CUHK03-NP and DukeMTMC-reID.
With the increasing deployment of diverse positioning devices and location-based services, a huge amount of spatial and temporal information has been collected and accumulated as trajectory data. Among many applications, trajectory-based location pre diction is gaining increasing attention because of its potential to improve the performance of many applications in multiple domains. This research focuses on trajectory sequence prediction methods using trajectory data obtained from the vehicles in urban traffic network. As Recurrent Neural Network(RNN) model is previously proposed, we propose an improved method of Attention-based Recurrent Neural Network model(ARNN) for urban vehicle trajectory prediction. We introduce attention mechanism into urban vehicle trajectory prediction to explain the impact of network-level traffic state information. The model is evaluated using the Bluetooth data of private vehicles collected in Brisbane, Australia with 5 metrics which are widely used in the sequence modeling. The proposed ARNN model shows significant performance improvement compared to the existing RNN models considering not only the cells to be visited but also the alignment of the cells in sequence.
Person Re-Identification (ReID) is a challenging problem in many video analytics and surveillance applications, where a persons identity must be associated across a distributed non-overlapping network of cameras. Video-based person ReID has recently gained much interest because it allows capturing discriminant spatio-temporal information from video clips that is unavailable for image-based ReID. Despite recent advances, deep learning (DL) models for video ReID often fail to leverage this information to improve the robustness of feature representations. In this paper, the motion pattern of a person is explored as an additional cue for ReID. In particular, a flow-guided Mutual Attention network is proposed for fusion of image and optical flow sequences using any 2D-CNN backbone, allowing to encode temporal information along with spatial appearance information. Our Mutual Attention network relies on the joint spatial attention between image and optical flow features maps to activate a common set of salient features across them. In addition to flow-guided attention, we introduce a method to aggregate features from longer input streams for better video sequence-level representation. Our extensive experiments on three challenging video ReID datasets indicate that using the proposed Mutual Attention network allows to improve recognition accuracy considerably with respect to conventional gated-attention networks, and state-of-the-art methods for video-based person ReID.
Identity recognition plays an important role in ensuring security in our daily life. Biometric-based (especially activity-based) approaches are favored due to their fidelity, universality, and resilience. However, most existing machine learning-based approaches rely on a traditional workflow where models are usually trained once for all, with limited involvement from end-users in the process and neglecting the dynamic nature of the learning process. This makes the models static and can not be updated in time, which usually leads to high false positive or false negative. Thus, in practice, an expert is desired to assist with providing high-quality observations and interpretation of model outputs. It is expedient to combine both advantages of human experts and the computational capability of computers to create a tight-coupling incremental learning process for better performance. In this study, we develop RLTIR, an interactive identity recognition approach based on reinforcement learning, to adjust the identification model by human guidance. We first build a base tree-structured identity recognition model. And an expert is introduced in the model for giving feedback upon model outputs. Then, the model is updated according to strategies that are automatically learned under a designated reinforcement learning framework. To the best of our knowledge, it is the very first attempt to combine human expert knowledge with model learning in the area of identity recognition. The experimental results show that the reinforced interactive identity recognition framework outperforms baseline methods with regard to recognition accuracy and robustness.
328 - Zhen Fu , Bo Wang , Xihong Wu 2021
The auditory attention decoding (AAD) approach was proposed to determine the identity of the attended talker in a multi-talker scenario by analyzing electroencephalography (EEG) data. Although the linear model-based method has been widely used in AAD , the linear assumption was considered oversimplified and the decoding accuracy remained lower for shorter decoding windows. Recently, nonlinear models based on deep neural networks (DNN) have been proposed to solve this problem. However, these models did not fully utilize both the spatial and temporal features of EEG, and the interpretability of DNN models was rarely investigated. In this paper, we proposed novel convolutional recurrent neural network (CRNN) based regression model and classification model, and compared them with both the linear model and the state-of-the-art DNN models. Results showed that, our proposed CRNN-based classification model outperformed others for shorter decoding windows (around 90% for 2 s and 5 s). Although worse than classification models, the decoding accuracy of the proposed CRNN-based regression model was about 5% greater than other regression models. The interpretability of DNN models was also investigated by visualizing layers weight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا