ترغب بنشر مسار تعليمي؟ اضغط هنا

Attention-Aware Compositional Network for Person Re-identification

113   0   0.0 ( 0 )
 نشر من قبل Jing Xu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Person re-identification (ReID) is to identify pedestrians observed from different camera views based on visual appearance. It is a challenging task due to large pose variations, complex background clutters and severe occlusions. Recently, human pose estimation by predicting joint locations was largely improved in accuracy. It is reasonable to use pose estimation results for handling pose variations and background clutters, and such attempts have obtained great improvement in ReID performance. However, we argue that the pose information was not well utilized and hasnt yet been fully exploited for person ReID. In this work, we introduce a novel framework called Attention-Aware Compositional Network (AACN) for person ReID. AACN consists of two main components: Pose-guided Part Attention (PPA) and Attention-aware Feature Composition (AFC). PPA is learned and applied to mask out undesirable background features in pedestrian feature maps. Furthermore, pose-guided visibility scores are estimated for body parts to deal with part occlusion in the proposed AFC module. Extensive experiments with ablation analysis show the effectiveness of our method, and state-of-the-art results are achieved on several public datasets, including Market-1501, CUHK03, CUHK01, SenseReID, CUHK03-NP and DukeMTMC-reID.

قيم البحث

اقرأ أيضاً

For person re-identification (re-id), attention mechanisms have become attractive as they aim at strengthening discriminative features and suppressing irrelevant ones, which matches well the key of re-id, i.e., discriminative feature learning. Previo us approaches typically learn attention using local convolutions, ignoring the mining of knowledge from global structure patterns. Intuitively, the affinities among spatial positions/nodes in the feature map provide clustering-like information and are helpful for inferring semantics and thus attention, especially for person images where the feasible human poses are constrained. In this work, we propose an effective Relation-Aware Global Attention (RGA) module which captures the global structural information for better attention learning. Specifically, for each feature position, in order to compactly grasp the structural information of global scope and local appearance information, we propose to stack the relations, i.e., its pairwise correlations/affinities with all the feature positions (e.g., in raster scan order), and the feature itself together to learn the attention with a shallow convolutional model. Extensive ablation studies demonstrate that our RGA can significantly enhance the feature representation power and help achieve the state-of-the-art performance on several popular benchmarks. The source code is available at https://github.com/microsoft/Relation-Aware-Global-Attention-Networks.
Visual attention has proven to be effective in improving the performance of person re-identification. Most existing methods apply visual attention heuristically by learning an additional attention map to re-weight the feature maps for person re-ident ification. However, this kind of methods inevitably increase the model complexity and inference time. In this paper, we propose to incorporate the attention learning as additional objectives in a person ReID network without changing the original structure, thus maintain the same inference time and model size. Two kinds of attentions have been considered to make the learned feature maps being aware of the person and related body parts respectively. Globally, a holistic attention branch (HAB) makes the feature maps obtained by backbone focus on persons so as to alleviate the influence of background. Locally, a partial attention branch (PAB) makes the extracted features be decoupled into several groups and be separately responsible for different body parts (i.e., keypoints), thus increasing the robustness to pose variation and partial occlusion. These two kinds of attentions are universal and can be incorporated into existing ReID networks. We have tested its performance on two typical networks (TriNet and Bag of Tricks) and observed significant performance improvement on five widely used datasets.
In this paper, we present novel sharp attention networks by adaptively sampling feature maps from convolutional neural networks (CNNs) for person re-identification (re-ID) problem. Due to the introduction of sampling-based attention models, the propo sed approach can adaptively generate sharper attention-aware feature masks. This greatly differs from the gating-based attention mechanism that relies soft gating functions to select the relevant features for person re-ID. In contrast, the proposed sampling-based attention mechanism allows us to effectively trim irrelevant features by enforcing the resultant feature masks to focus on the most discriminative features. It can produce sharper attentions that are more assertive in localizing subtle features relevant to re-identifying people across cameras. For this purpose, a differentiable Gumbel-Softmax sampler is employed to approximate the Bernoulli sampling to train the sharp attention networks. Extensive experimental evaluations demonstrate the superiority of this new sharp attention model for person re-ID over the other state-of-the-art methods on three challenging benchmarks including CUHK03, Market-1501, and DukeMTMC-reID.
In this work, we present a deep convolutional pyramid person matching network (PPMN) with specially designed Pyramid Matching Module to address the problem of person re-identification. The architecture takes a pair of RGB images as input, and outputs a similiarity value indicating whether the two input images represent the same person or not. Based on deep convolutional neural networks, our approach first learns the discriminative semantic representation with the semantic-component-aware features for persons and then employs the Pyramid Matching Module to match the common semantic-components of persons, which is robust to the variation of spatial scales and misalignment of locations posed by viewpoint changes. The above two processes are jointly optimized via a unified end-to-end deep learning scheme. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our approach against the state-of-the-art approaches, especially on the rank-1 recognition rate.
Extracting effective and discriminative features is very important for addressing the challenging person re-identification (re-ID) task. Prevailing deep convolutional neural networks (CNNs) usually use high-level features for identifying pedestrian. However, some essential spatial information resided in low-level features such as shape, texture and color will be lost when learning the high-level features, due to extensive padding and pooling operations in the training stage. In addition, most existing person re-ID methods are mainly based on hand-craft bounding boxes where images are precisely aligned. It is unrealistic in practical applications, since the exploited object detection algorithms often produce inaccurate bounding boxes. This will inevitably degrade the performance of existing algorithms. To address these problems, we put forward a novel person re-ID model that fuses high- and low-level embeddings to reduce the information loss caused in learning high-level features. Then we divide the fused embedding into several parts and reconnect them to obtain the global feature and more significant local features, so as to alleviate the affect caused by the inaccurate bounding boxes. In addition, we also introduce the spatial and channel attention mechanisms in our model, which aims to mine more discriminative features related to the target. Finally, we reconstruct the feature extractor to ensure that our model can obtain more richer and robust features. Extensive experiments display the superiority of our approach compared with existing approaches. Our code is available at https://github.com/libraflower/MutipleFeature-for-PRID.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا