ترغب بنشر مسار تعليمي؟ اضغط هنا

RLTIR: Activity-based Interactive Person Identification based on Reinforcement Learning Tree

90   0   0.0 ( 0 )
 نشر من قبل Qingyang Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Identity recognition plays an important role in ensuring security in our daily life. Biometric-based (especially activity-based) approaches are favored due to their fidelity, universality, and resilience. However, most existing machine learning-based approaches rely on a traditional workflow where models are usually trained once for all, with limited involvement from end-users in the process and neglecting the dynamic nature of the learning process. This makes the models static and can not be updated in time, which usually leads to high false positive or false negative. Thus, in practice, an expert is desired to assist with providing high-quality observations and interpretation of model outputs. It is expedient to combine both advantages of human experts and the computational capability of computers to create a tight-coupling incremental learning process for better performance. In this study, we develop RLTIR, an interactive identity recognition approach based on reinforcement learning, to adjust the identification model by human guidance. We first build a base tree-structured identity recognition model. And an expert is introduced in the model for giving feedback upon model outputs. Then, the model is updated according to strategies that are automatically learned under a designated reinforcement learning framework. To the best of our knowledge, it is the very first attempt to combine human expert knowledge with model learning in the area of identity recognition. The experimental results show that the reinforced interactive identity recognition framework outperforms baseline methods with regard to recognition accuracy and robustness.



قيم البحث

اقرأ أيضاً

Reinforcement learning techniques successfully generate convincing agent behaviors, but it is still difficult to tailor the behavior to align with a users specific preferences. What is missing is a communication method for the system to explain the b ehavior and for the user to repair it. In this paper, we present a novel interaction method that uses interactive explanations using templates of natural language as a communication method. The main advantage of this interaction method is that it enables a two-way communication channel between users and the agent; the bot can explain its thinking procedure to the users, and the users can communicate their behavior preferences to the bot using the same interactive explanations. In this manner, the thinking procedure of the bot is transparent, and users can provide corrections to the bot that include a suggested action to take, a goal to achieve, and the reasons behind these decisions. We tested our proposed method in a clone of the video game named textit{Super Mario Bros.}, and the results demonstrate that our interactive explanation approach is effective at diagnosing and repairing bot behaviors.
Person identification technology recognizes individuals by exploiting their unique, measurable physiological and behavioral characteristics. However, the state-of-the-art person identification systems have been shown to be vulnerable, e.g., contact l enses can trick iris recognition and fingerprint films can deceive fingerprint sensors. EEG (Electroencephalography)-based identification, which utilizes the users brainwave signals for identification and offers a more resilient solution, draw a lot of attention recently. However, the accuracy still requires improvement and very little work is focusing on the robustness and adaptability of the identification system. We propose MindID, an EEG-based biometric identification approach, achieves higher accuracy and better characteristics. At first, the EEG data patterns are analyzed and the results show that the Delta pattern contains the most distinctive information for user identification. Then the decomposed Delta pattern is fed into an attention-based Encoder-Decoder RNNs (Recurrent Neural Networks) structure which assigns varies attention weights to different EEG channels based on the channels importance. The discriminative representations learned from the attention-based RNN are used to recognize the user identification through a boosting classifier. The proposed approach is evaluated over 3 datasets (two local and one public). One local dataset (EID-M) is used for performance assessment and the result illustrate that our model achieves the accuracy of 0.982 which outperforms the baselines and the state-of-the-art. Another local dataset (EID-S) and a public dataset (EEG-S) are utilized to demonstrate the robustness and adaptability, respectively. The results indicate that the proposed approach has the potential to be largely deployment in practice environment.
In this work, we consider the problem of searching people in an unconstrained environment, with natural language descriptions. Specifically, we study how to systematically design an algorithm to effectively acquire descriptions from humans. An algori thm is proposed by adapting models, used for visual and language understanding, to search a person of interest (POI) in a principled way, achieving promising results without the need to re-design another complicated model. We then investigate an iterative question-answering (QA) strategy that enable robots to request additional information about the POIs appearance from the user. To this end, we introduce a greedy algorithm to rank questions in terms of their significance, and equip the algorithm with the capability to dynamically adjust the length of human-robot interaction according to models uncertainty. Our approach is validated not only on benchmark datasets but on a mobile robot, moving in a dynamic and crowded environment.
Interactive reinforcement learning (RL) has been successfully used in various applications in different fields, which has also motivated HCI researchers to contribute in this area. In this paper, we survey interactive RL to empower human-computer int eraction (HCI) researchers with the technical background in RL needed to design new interaction techniques and propose new applications. We elucidate the roles played by HCI researchers in interactive RL, identifying ideas and promising research directions. Furthermore, we propose generic design principles that will provide researchers with a guide to effectively implement interactive RL applications.
It is prohibitively expensive to annotate a large-scale video-based person re-identification (re-ID) dataset, which makes fully supervised methods inapplicable to real-world deployment. How to maximally reduce the annotation cost while retaining the re-ID performance becomes an interesting problem. In this paper, we address this problem by integrating an active learning scheme into a deep learning framework. Noticing that the truly matched tracklet-pairs, also denoted as true positives (TP), are the most informative samples for our re-ID model, we propose a sampling criterion to choose the most TP-likely tracklet-pairs for annotation. A view-aware sampling strategy considering view-specific biases is designed to facilitate candidate selection, followed by an adaptive resampling step to leave out the selected candidates that are unnecessary to annotate. Our method learns the re-ID model and updates the annotation set iteratively. The re-ID model is supervised by the tracklets pesudo labels that are initialized by treating each tracklet as a distinct class. With the gained annotations of the actively selected candidates, the tracklets pesudo labels are updated by label merging and further used to re-train our re-ID model. While being simple, the proposed method demonstrates its effectiveness on three video-based person re-ID datasets. Experimental results show that less than 3% pairwise annotations are needed for our method to reach comparable performance with the fully-supervised setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا