ﻻ يوجد ملخص باللغة العربية
Identity recognition plays an important role in ensuring security in our daily life. Biometric-based (especially activity-based) approaches are favored due to their fidelity, universality, and resilience. However, most existing machine learning-based approaches rely on a traditional workflow where models are usually trained once for all, with limited involvement from end-users in the process and neglecting the dynamic nature of the learning process. This makes the models static and can not be updated in time, which usually leads to high false positive or false negative. Thus, in practice, an expert is desired to assist with providing high-quality observations and interpretation of model outputs. It is expedient to combine both advantages of human experts and the computational capability of computers to create a tight-coupling incremental learning process for better performance. In this study, we develop RLTIR, an interactive identity recognition approach based on reinforcement learning, to adjust the identification model by human guidance. We first build a base tree-structured identity recognition model. And an expert is introduced in the model for giving feedback upon model outputs. Then, the model is updated according to strategies that are automatically learned under a designated reinforcement learning framework. To the best of our knowledge, it is the very first attempt to combine human expert knowledge with model learning in the area of identity recognition. The experimental results show that the reinforced interactive identity recognition framework outperforms baseline methods with regard to recognition accuracy and robustness.
Reinforcement learning techniques successfully generate convincing agent behaviors, but it is still difficult to tailor the behavior to align with a users specific preferences. What is missing is a communication method for the system to explain the b
Person identification technology recognizes individuals by exploiting their unique, measurable physiological and behavioral characteristics. However, the state-of-the-art person identification systems have been shown to be vulnerable, e.g., contact l
In this work, we consider the problem of searching people in an unconstrained environment, with natural language descriptions. Specifically, we study how to systematically design an algorithm to effectively acquire descriptions from humans. An algori
Interactive reinforcement learning (RL) has been successfully used in various applications in different fields, which has also motivated HCI researchers to contribute in this area. In this paper, we survey interactive RL to empower human-computer int
It is prohibitively expensive to annotate a large-scale video-based person re-identification (re-ID) dataset, which makes fully supervised methods inapplicable to real-world deployment. How to maximally reduce the annotation cost while retaining the