ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Multi-Modal Word Representation Grounded in Visual Context

183   0   0.0 ( 0 )
 نشر من قبل Eloi Zablocki
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Representing the semantics of words is a long-standing problem for the natural language processing community. Most methods compute word semantics given their textual context in large corpora. More recently, researchers attempted to integrate perceptual and visual features. Most of these works consider the visual appearance of objects to enhance word representations but they ignore the visual environment and context in which objects appear. We propose to unify text-based techniques with vision-based techniques by simultaneously leveraging textual and visual context to learn multimodal word embeddings. We explore various choices for what can serve as a visual context and present an end-to-end method to integrate visual context elements in a multimodal skip-gram model. We provide experiments and extensive analysis of the obtained results.

قيم البحث

اقرأ أيضاً

Word representation is a fundamental component in neural language understanding models. Recently, pre-trained language models (PrLMs) offer a new performant method of contextualized word representations by leveraging the sequence-level context for mo deling. Although the PrLMs generally give more accurate contextualized word representations than non-contextualized models do, they are still subject to a sequence of text contexts without diverse hints for word representation from multimodality. This paper thus proposes a visual representation method to explicitly enhance conventional word embedding with multiple-aspect senses from visual guidance. In detail, we build a small-scale word-image dictionary from a multimodal seed dataset where each word corresponds to diverse related images. The texts and paired images are encoded in parallel, followed by an attention layer to integrate the multimodal representations. We show that the method substantially improves the accuracy of disambiguation. Experiments on 12 natural language understanding and machine translation tasks further verify the effectiveness and the generalization capability of the proposed approach.
There has been significant interest recently in learning multilingual word embeddings -- in which semantically similar words across languages have similar embeddings. State-of-the-art approaches have relied on expensive labeled data, which is unavail able for low-resource languages, or have involved post-hoc unification of monolingual embeddings. In the present paper, we investigate the efficacy of multilingual embeddings learned from weakly-supervised image-text data. In particular, we propose methods for learning multilingual embeddings using image-text data, by enforcing similarity between the representations of the image and that of the text. Our experiments reveal that even without using any expensive labeled data, a bag-of-words-based embedding model trained on image-text data achieves performance comparable to the state-of-the-art on crosslingual semantic similarity tasks.
Unsupervised representation learning has achieved outstanding performances using centralized data available on the Internet. However, the increasing awareness of privacy protection limits sharing of decentralized unlabeled image data that grows explo sively in multiple parties (e.g., mobile phones and cameras). As such, a natural problem is how to leverage these data to learn visual representations for downstream tasks while preserving data privacy. To address this problem, we propose a novel federated unsupervised learning framework, FedU. In this framework, each party trains models from unlabeled data independently using contrastive learning with an online network and a target network. Then, a central server aggregates trained models and updates clients models with the aggregated model. It preserves data privacy as each party only has access to its raw data. Decentralized data among multiple parties are normally non-independent and identically distributed (non-IID), leading to performance degradation. To tackle this challenge, we propose two simple but effective methods: 1) We design the communication protocol to upload only the encoders of online networks for server aggregation and update them with the aggregated encoder; 2) We introduce a new module to dynamically decide how to update predictors based on the divergence caused by non-IID. The predictor is the other component of the online network. Extensive experiments and ablations demonstrate the effectiveness and significance of FedU. It outperforms training with only one party by over 5% and other methods by over 14% in linear and semi-supervised evaluation on non-IID data.
181 - Xin Wang , Yasheng Wang , Fei Mi 2021
Code representation learning, which aims to encode the semantics of source code into distributed vectors, plays an important role in recent deep-learning-based models for code intelligence. Recently, many pre-trained language models for source code ( e.g., CuBERT and CodeBERT) have been proposed to model the context of code and serve as a basis for downstream code intelligence tasks such as code search, code clone detection, and program translation. Current approaches typically consider the source code as a plain sequence of tokens, or inject the structure information (e.g., AST and data-flow) into the sequential model pre-training. To further explore the properties of programming languages, this paper proposes SynCoBERT, a syntax-guided multi-modal contrastive pre-training approach for better code representations. Specially, we design two novel pre-training objectives originating from the symbolic and syntactic properties of source code, i.e., Identifier Prediction (IP) and AST Edge Prediction (TEP), which are designed to predict identifiers, and edges between two nodes of AST, respectively. Meanwhile, to exploit the complementary information in semantically equivalent modalities (i.e., code, comment, AST) of the code, we propose a multi-modal contrastive learning strategy to maximize the mutual information among different modalities. Extensive experiments on four downstream tasks related to code intelligence show that SynCoBERT advances the state-of-the-art with the same pre-training corpus and model size.
Approaches to Grounded Language Learning typically focus on a single task-based final performance measure that may not depend on desirable properties of the learned hidden representations, such as their ability to predict salient attributes or to gen eralise to unseen situations. To remedy this, we present GROLLA, an evaluation framework for Grounded Language Learning with Attributes with three sub-tasks: 1) Goal-oriented evaluation; 2) Object attribute prediction evaluation; and 3) Zero-shot evaluation. We also propose a new dataset CompGuessWhat?! as an instance of this framework for evaluating the quality of learned neural representations, in particular concerning attribute grounding. To this end, we extend the original GuessWhat?! dataset by including a semantic layer on top of the perceptual one. Specifically, we enrich the VisualGenome scene graphs associated with the GuessWhat?! images with abstract and situated attributes. By using diagnostic classifiers, we show that current models learn representations that are not expressive enough to encode object attributes (average F1 of 44.27). In addition, they do not learn strategies nor representations that are robust enough to perform well when novel scenes or objects are involved in gameplay (zero-shot best accuracy 50.06%).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا