ﻻ يوجد ملخص باللغة العربية
Generative Adversarial Networks (GANs) have become a popular method to learn a probability model from data. In this paper, we aim to provide an understanding of some of the basic issues surrounding GANs including their formulation, generalization and stability on a simple benchmark where the data has a high-dimensional Gaussian distribution. Even in this simple benchmark, the GAN problem has not been well-understood as we observe that existing state-of-the-art GAN architectures may fail to learn a proper generative distribution owing to (1) stability issues (i.e., convergence to bad local solutions or not converging at all), (2) approximation issues (i.e., having improper global GAN optimizers caused by inappropriate GANs loss functions), and (3) generalizability issues (i.e., requiring large number of samples for training). In this setup, we propose a GAN architecture which recovers the maximum-likelihood solution and demonstrates fast generalization. Moreover, we analyze global stability of different computational approaches for the proposed GAN optimization and highlight their pros and cons. Finally, we outline an extension of our model-based approach to design GANs in more complex setups than the considered Gaussian benchmark.
We investigate the training and performance of generative adversarial networks using the Maximum Mean Discrepancy (MMD) as critic, termed MMD GANs. As our main theoretical contribution, we clarify the situation with bias in GAN loss functions raised
In this paper, we consider a discrete time linear quadratic Gaussian (LQG) control problem in which state information of the plant is encoded in a variable-length binary codeword at every time step, and a control input is determined based on the code
In a noiseless linear estimation problem, one aims to reconstruct a vector x* from the knowledge of its linear projections y=Phi x*. There have been many theoretical works concentrating on the case where the matrix Phi is a random i.i.d. one, but a n
Real-world data typically contain a large number of features that are often heterogeneous in nature, relevance, and also units of measure. When assessing the similarity between data points, one can build various distance measures using subsets of the
Rectified linear units, or ReLUs, have become the preferred activation function for artificial neural networks. In this paper we consider two basic learning problems assuming that the underlying data follow a generative model based on a ReLU-network