ﻻ يوجد ملخص باللغة العربية
In this paper, we consider a discrete time linear quadratic Gaussian (LQG) control problem in which state information of the plant is encoded in a variable-length binary codeword at every time step, and a control input is determined based on the codewords generated in the past. We derive a lower bound of the rate achievable by the class of prefix-free codes attaining the required LQG control performance. This lower bound coincides with the infimum of a certain directed information expression, and is computable by semidefinite programming (SDP). Based on a technique by Silva et al., we also provide an upper bound of the best achievable rate by constructing a controller equipped with a uniform quantizer with subtractive dither and Shannon-Fano coding. The gap between the obtained lower and upper bounds is less than $0.754r+1$ bits per time step regardless of the required LQG control performance, where $r$ is the rank of a signal-to-noise ratio matrix obtained by SDP, which is no greater than the dimension of the state.
This paper studies a class of partially observed Linear Quadratic Gaussian (LQG) problems with unknown dynamics. We establish an end-to-end sample complexity bound on learning a robust LQG controller for open-loop stable plants. This is achieved usin
Reliable models of a large variety of open quantum systems can be described by Lindblad master equation. An important property of some open quantum systems is the existence of decoherence-free subspaces. In this paper, we develop tools for constructi
The Kraft inequality gives a necessary and sufficient condition for the existence of a single channel prefix-free code. However, the multichannel Kraft inequality does not imply the existence of a multichannel prefix-free code in general. It is natur
Let $P = {p(i)}$ be a measure of strictly positive probabilities on the set of nonnegative integers. Although the countable number of inputs prevents usage of the Huffman algorithm, there are nontrivial $P$ for which known methods find a source code
In the paper we study a deep learning based method to solve the multicell power control problem for sum rate maximization subject to per-user rate constraints and per-base station (BS) power constraints. The core difficulty of this problem is how to