ترغب بنشر مسار تعليمي؟ اضغط هنا

Rate of Prefix-free Codes in LQG Control Systems

89   0   0.0 ( 0 )
 نشر من قبل Takashi Tanaka
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider a discrete time linear quadratic Gaussian (LQG) control problem in which state information of the plant is encoded in a variable-length binary codeword at every time step, and a control input is determined based on the codewords generated in the past. We derive a lower bound of the rate achievable by the class of prefix-free codes attaining the required LQG control performance. This lower bound coincides with the infimum of a certain directed information expression, and is computable by semidefinite programming (SDP). Based on a technique by Silva et al., we also provide an upper bound of the best achievable rate by constructing a controller equipped with a uniform quantizer with subtractive dither and Shannon-Fano coding. The gap between the obtained lower and upper bounds is less than $0.754r+1$ bits per time step regardless of the required LQG control performance, where $r$ is the rank of a signal-to-noise ratio matrix obtained by SDP, which is no greater than the dimension of the state.



قيم البحث

اقرأ أيضاً

This paper studies a class of partially observed Linear Quadratic Gaussian (LQG) problems with unknown dynamics. We establish an end-to-end sample complexity bound on learning a robust LQG controller for open-loop stable plants. This is achieved usin g a robust synthesis procedure, where we first estimate a model from a single input-output trajectory of finite length, identify an H-infinity bound on the estimation error, and then design a robust controller using the estimated model and its quantified uncertainty. Our synthesis procedure leverages a recent control tool called Input-Output Parameterization (IOP) that enables robust controller design using convex optimization. For open-loop stable systems, we prove that the LQG performance degrades linearly with respect to the model estimation error using the proposed synthesis procedure. Despite the hidden states in the LQG problem, the achieved scaling matches previous results on learning Linear Quadratic Regulator (LQR) controllers with full state observations.
Reliable models of a large variety of open quantum systems can be described by Lindblad master equation. An important property of some open quantum systems is the existence of decoherence-free subspaces. In this paper, we develop tools for constructi ng stabilizer codes over open quantum systems governed by Lindblad master equation. We apply the developed stabilizer code formalism to the area of quantum metrology. In particular, a strategy to attain the Heisenberg limit scaling is proposed.
The Kraft inequality gives a necessary and sufficient condition for the existence of a single channel prefix-free code. However, the multichannel Kraft inequality does not imply the existence of a multichannel prefix-free code in general. It is natur al to ask whatever there exists an efficient decision procedure for the existence of multichannel prefix-free codes. In this paper, we tackle the two-channel case of the above problem by relating it to a constrained rectangle packing problem. Although a general rectangle packing problem is NP-complete, the extra imposed constraints allow us to propose an algorithm which can solve the problem efficiently.
102 - Michael B. Baer 2007
Let $P = {p(i)}$ be a measure of strictly positive probabilities on the set of nonnegative integers. Although the countable number of inputs prevents usage of the Huffman algorithm, there are nontrivial $P$ for which known methods find a source code that is optimal in the sense of minimizing expected codeword length. For some applications, however, a source code should instead minimize one of a family of nonlinear objective functions, $beta$-exponential means, those of the form $log_a sum_i p(i) a^{n(i)}$, where $n(i)$ is the length of the $i$th codeword and $a$ is a positive constant. Applications of such minimizations include a problem of maximizing the chance of message receipt in single-shot communications ($a<1$) and a problem of minimizing the chance of buffer overflow in a queueing system ($a>1$). This paper introduces methods for finding codes optimal for such exponential means. One method applies to geometric distributions, while another applies to distributions with lighter tails. The latter algorithm is applied to Poisson distributions. Both are extended to minimizing maximum pointwise redundancy.
In the paper we study a deep learning based method to solve the multicell power control problem for sum rate maximization subject to per-user rate constraints and per-base station (BS) power constraints. The core difficulty of this problem is how to ensure that the learned power control results by the deep neural network (DNN) satisfy the per-user rate constraints. To tackle the difficulty, we propose to cascade a projection block after a traditional DNN, which projects the infeasible power control results onto the constraint set. The projection block is designed based on a geometrical interpretation of the constraints, which is of low complexity, meeting the real-time requirement of online applications. Explicit-form expression of the backpropagated gradient is derived for the proposed projection block, with which the DNN can be trained to directly maximize the sum rate via unsupervised learning. We also develop a heuristic implementation of the projection block to reduce the size of DNN. Simulation results demonstrate the advantages of the proposed method over existing deep learning and numerical optimization~methods, and show the robustness of the proposed method with the model mismatch between training and testing~datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا