ﻻ يوجد ملخص باللغة العربية
In a noiseless linear estimation problem, one aims to reconstruct a vector x* from the knowledge of its linear projections y=Phi x*. There have been many theoretical works concentrating on the case where the matrix Phi is a random i.i.d. one, but a number of heuristic evidence suggests that many of these results are universal and extend well beyond this restricted case. Here we revisit this problematic through the prism of development of message passing methods, and consider not only the universality of the l1 transition, as previously addressed, but also the one of the optimal Bayesian reconstruction. We observed that the universality extends to the Bayes-optimal minimum mean-squared (MMSE) error, and to a range of structured matrices.
In this manuscript we consider Kernel Ridge Regression (KRR) under the Gaussian design. Exponents for the decay of the excess generalization error of KRR have been reported in various works under the assumption of power-law decay of eigenvalues of th
We study the problem of recovering an unknown signal $boldsymbol x$ given measurements obtained from a generalized linear model with a Gaussian sensing matrix. Two popular solutions are based on a linear estimator $hat{boldsymbol x}^{rm L}$ and a spe
We consider the problem of estimating a signal from measurements obtained via a generalized linear model. We focus on estimators based on approximate message passing (AMP), a family of iterative algorithms with many appealing features: the performanc
Recently, Gnutzmann and Smilansky presented a formula for the bond scattering matrix of a graph with respect to a Hermitian matrix. We present another proof for this Gnutzmann and Smilanskys formula by a technique used in the zeta function of a graph
The estimation of an f-divergence between two probability distributions based on samples is a fundamental problem in statistics and machine learning. Most works study this problem under very weak assumptions, in which case it is provably hard. We con