ﻻ يوجد ملخص باللغة العربية
This work presents the design and analysis of a mixed-signal neuron (MS-N) for convolutional neural networks (CNN) and compares its performance with a digital neuron (Dig-N) in terms of operating frequency, power and noise. The circuit-level implementation of the MS-N in 65 nm CMOS technology exhibits 2-3 orders of magnitude better energy-efficiency over Dig-N for neuromorphic computing applications - especially at low frequencies due to the high leakage currents from many transistors in Dig-N. The inherent error-resiliency of CNN is exploited to handle the thermal and flicker noise of MS-N. A system-level analysis using a cohesive circuit-algorithmic framework on MNIST and CIFAR-10 datasets demonstrate an increase of 3% in worst-case classification error for MNIST when the integrated noise power in the bandwidth is ~ 1 {mu}V2.
Neuromorphic computing, inspired by the brain, promises extreme efficiency for certain classes of learning tasks, such as classification and pattern recognition. The performance and power consumption of neuromorphic computing depends heavily on the c
The progress in neuromorphic computing is fueled by the development of novel nonvolatile memories capable of storing analog information and implementing neural computation efficiently. However, like most other analog circuits, these devices and circu
As processes continue to scale aggressively, the design of deep sub-micron, mixed-signal design is becoming more and more challenging. In this paper we present an analysis of scaling multi-core mixed-signal neuromorphic processors to advanced 28 nm F
Developing mixed-signal analog-digital neuromorphic circuits in advanced scaled processes poses significant design challenges. We present compact and energy efficient sub-threshold analog synapse and neuron circuits, optimized for a 28 nm FD-SOI proc
In-Memory Computing (IMC) hardware using Memristive Crossbar Arrays (MCAs) are gaining popularity to accelerate Deep Neural Networks (DNNs) since it alleviates the memory wall problem associated with von-Neumann architecture. The hardware efficiency