ﻻ يوجد ملخص باللغة العربية
The progress in neuromorphic computing is fueled by the development of novel nonvolatile memories capable of storing analog information and implementing neural computation efficiently. However, like most other analog circuits, these devices and circuits are prone to imperfections, such as temperature dependency, noise, tuning error, etc., often leading to considerable performance degradation in neural network implementations. Indeed, imperfections are major obstacles in the path of further progress and ultimate commercialization of these technologies. Hence, a practically viable approach should be developed to deal with these nonidealities and unleash the full potential of nonvolatile memories in neuromorphic systems. Here, for the first time, we report a comprehensive characterization of critical imperfections in two analog-grade memories, namely passively-integrated memristors and redesigned eFlash memories, which both feature long-term retention, high endurance, analog storage, low-power operation, and compact nano-scale footprint. Then, we propose a holistic approach that includes modifications in the training, tuning algorithm, memory state optimization, and circuit design to mitigate these imperfections. Our proposed methodology is corroborated on a hybrid software/experimental framework using two benchmarks: a moderate-size convolutional neural network and ResNet-18 trained on CIFAR-10 and ImageNet datasets, respectively. Our proposed approaches allow 2.5x to 9x improvements in the energy consumption of memory arrays during inference and sub-percent accuracy drop across 25-100 C temperature range. The defect tolerance is improved by >100x, and a sub-percent accuracy drop is demonstrated in deep neural networks built with 64x64 passive memristive crossbars featuring 25% normalized switching threshold variations.
Developing mixed-signal analog-digital neuromorphic circuits in advanced scaled processes poses significant design challenges. We present compact and energy efficient sub-threshold analog synapse and neuron circuits, optimized for a 28 nm FD-SOI proc
As processes continue to scale aggressively, the design of deep sub-micron, mixed-signal design is becoming more and more challenging. In this paper we present an analysis of scaling multi-core mixed-signal neuromorphic processors to advanced 28 nm F
This work presents the design and analysis of a mixed-signal neuron (MS-N) for convolutional neural networks (CNN) and compares its performance with a digital neuron (Dig-N) in terms of operating frequency, power and noise. The circuit-level implemen
Neuromorphic computing, inspired by the brain, promises extreme efficiency for certain classes of learning tasks, such as classification and pattern recognition. The performance and power consumption of neuromorphic computing depends heavily on the c
Several analog and digital brain-inspired electronic systems have been recently proposed as dedicated solutions for fast simulations of spiking neural networks. While these architectures are useful for exploring the computational properties of large-