ترغب بنشر مسار تعليمي؟ اضغط هنا

NAX: Co-Designing Neural Network and Hardware Architecture for Memristive Xbar based Computing Systems

68   0   0.0 ( 0 )
 نشر من قبل Shubham Negi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In-Memory Computing (IMC) hardware using Memristive Crossbar Arrays (MCAs) are gaining popularity to accelerate Deep Neural Networks (DNNs) since it alleviates the memory wall problem associated with von-Neumann architecture. The hardware efficiency (energy, latency and area) as well as application accuracy (considering device and circuit non-idealities) of DNNs mapped to such hardware are co-dependent on network parameters, such as kernel size, depth etc. and hardware architecture parameters such as crossbar size. However, co-optimization of both network and hardware parameters presents a challenging search space comprising of different kernel sizes mapped to varying crossbar sizes. To that effect, we propose NAX -- an efficient neural architecture search engine that co-designs neural network and IMC based hardware architecture. NAX explores the aforementioned search space to determine kernel and corresponding crossbar sizes for each DNN layer to achieve optimal tradeoffs between hardware efficiency and application accuracy. Our results from NAX show that the networks have heterogeneous crossbar sizes across different network layers, and achieves optimal hardware efficiency and accuracy considering the non-idealities in crossbars. On CIFAR-10 and Tiny ImageNet, our models achieve 0.8%, 0.2% higher accuracy, and 17%, 4% lower EDAP (energy-delay-area product) compared to a baseline ResNet-20 and ResNet-18 models, respectively.

قيم البحث

اقرأ أيضاً

The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing.
The use of deep learning has grown at an exponential rate, giving rise to numerous specialized hardware and software systems for deep learning. Because the design space of deep learning software stacks and hardware accelerators is diverse and vast, p rior work considers software optimizations separately from hardware architectures, effectively reducing the search space. Unfortunately, this bifurcated approach means that many profitable design points are never explored. This paper instead casts the problem as hardware/software co-design, with the goal of automatically identifying desirable points in the joint design space. The key to our solution is a new constrained Bayesian optimization framework that avoids invalid solutions by exploiting the highly constrained features of this design space, which are semi-continuous/semi-discrete. We evaluate our optimization framework by applying it to a variety of neural models, improving the energy-delay product by 18% (ResNet) and 40% (DQN) over hand-tuned state-of-the-art systems, as well as demonstrating strong results on other neural network architectures, such as MLPs and Transformers.
The memristive crossbar aims to implement analog weighted neural network, however, the realistic implementation of such crossbar arrays is not possible due to limited switching states of memristive devices. In this work, we propose the design of an a nalog deep neural network with binary weight update through backpropagation algorithm using binary state memristive devices. We show that such networks can be successfully used for image processing task and has the advantage of lower power consumption and small on-chip area in comparison with digital counterparts. The proposed network was benchmarked for MNIST handwritten digits recognition achieving an accuracy of approximately 90%.
Binarized Neural Networks, a recently discovered class of neural networks with minimal memory requirements and no reliance on multiplication, are a fantastic opportunity for the realization of compact and energy efficient inference hardware. However, such neural networks are generally not entirely binarized: their first layer remains with fixed point input. In this work, we propose a stochastic computing version of Binarized Neural Networks, where the input is also binarized. Simulations on the example of the Fashion-MNIST and CIFAR-10 datasets show that such networks can approach the performance of conventional Binarized Neural Networks. We evidence that the training procedure should be adapted for use with stochastic computing. Finally, the ASIC implementation of our scheme is investigated, in a system that closely associates logic and memory, implemented by Spin Torque Magnetoresistive Random Access Memory. This analysis shows that the stochastic computing approach can allow considerable savings with regards to conventional Binarized Neural networks in terms of area (62% area reduction on the Fashion-MNIST task). It can also allow important savings in terms of energy consumption, if we accept reasonable reduction of accuracy: for example a factor 2.1 can be saved, with the cost of 1.4% in Fashion-MNIST test accuracy. These results highlight the high potential of Binarized Neural Networks for hardware implementation, and that adapting them to hardware constrains can provide important benefits.
Uncertainty plays a key role in real-time machine learning. As a significant shift from standard deep networks, which does not consider any uncertainty formulation during its training or inference, Bayesian deep networks are being currently investiga ted where the network is envisaged as an ensemble of plausible models learnt by the Bayes formulation in response to uncertainties in sensory data. Bayesian deep networks consider each synaptic weight as a sample drawn from a probability distribution with learnt mean and variance. This paper elaborates on a hardware design that exploits cycle-to-cycle variability of oxide based Resistive Random Access Memories (RRAMs) as a means to realize such a probabilistic sampling function, instead of viewing it as a disadvantage.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا