ﻻ يوجد ملخص باللغة العربية
We present state-of-the-art results from a lattice QCD calculation of the nucleon axial coupling, $g_A$, using Mobius Domain-Wall fermions solved on the dynamical $N_f = 2 + 1 + 1$ HISQ ensembles after they are smeared using the gradient-flow algorithm. Relevant three-point correlation functions are calculated using a method inspired by the Feynman-Hellmann theorem, and demonstrate significant improvement in signal for fixed stochastic samples. The calculation is performed at five pion masses of $m_pisim {400, 350, 310, 220, 130}$~MeV, three lattice spacings of $asim{0.15, 0.12, 0.09}$~fm, and we do a dedicated volume study with $m_pi Lsim{3.22, 4.29, 5.36}$. Control over all relevant sources of systematic uncertainty are demonstrated and quantified. We achieve a preliminary value of $g_A = 1.285(17)$, with a relative uncertainty of 1.33%.
We present a new analysis method that allows one to understand and model excited state contributions in observables that are dominated by a pion pole. We apply this method to extract axial and (induced) pseudoscalar nucleon isovector form factors, wh
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects a
We present results on the nucleon axial vector form factors $G_A(q^2)$ and $G_p(q^2)$ in the quenched theory and using two degenerate flavors of dynamical Wilson fermions for momentum transfer squared from about 0.1 to about 2 GeV^2 and for pion mass
We present preliminary results on the axial form factor $G_A(Q^2)$ and the induced pseudoscalar form factor $G_P(Q^2)$ of the nucleon. A systematic analysis of the excited-state contributions to form factors is performed on the CLS ensemble `N6 with
Including the meson-baryon (5 quark) intermediate states in a lattice simulation is challenging. However, it is important in order to obtain the correct energy eigenstates and to relate them to scattering phase shifts. Recent results for the negative