ترغب بنشر مسار تعليمي؟ اضغط هنا

Pion Nucleon Scattering: Some Results from Lattice QCD

128   0   0.0 ( 0 )
 نشر من قبل Christian B. Lang
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Including the meson-baryon (5 quark) intermediate states in a lattice simulation is challenging. However, it is important in order to obtain the correct energy eigenstates and to relate them to scattering phase shifts. Recent results for the negative parity nucleon channel and the problem of baryonic resonances in lattice calculations are discussed.



قيم البحث

اقرأ أيضاً

We present a lattice QCD study of $Npi$ scattering in the positive-parity nucleon channel, where the puzzling Roper resonance $N^*(1440)$ resides in experiment. The study is based on the PACS-CS ensemble of gauge configurations with $N_f=2+1$ Wilson- clover dynamical fermions, $m_pi simeq 156~$MeV and $Lsimeq 2.9~$fm. In addition to a number of $qqq$ interpolating fields, we implement operators for $Npi$ in $p$-wave and $Nsigma$ in $s$-wave. In the center-of-momentum frame we find three eigenstates below 1.65 GeV. They are dominated by $N(0)$, $N(0)pi(0)pi(0)$ (mixed with $N(0)sigma(0)$) and $N(p)pi(-p)$ with $psimeq 2pi/L$, where momenta are given in parentheses. This is the first simulation where the expected multi-hadron states are found in this channel. The experimental $Npi$ phase-shift would -- in the approximation of purely elastic $Npi$ scattering -- imply an additional eigenstate near the Roper mass $m_Rsimeq 1.43~$GeV for our lattice size. We do not observe any such additional eigenstate, which indicates that $Npi$ elastic scattering alone does not render a low-lying Roper. Coupling with other channels, most notably with $Npipi$, seems to be important for generating the Roper resonance, reinforcing the notion that this state could be a dynamically generated resonance. Our results are in line with most of previous lattice studies based just on $qqq$ interpolators, that did not find a Roper eigenstate below $1.65~$GeV. The study of the coupled-channel scattering including a three-particle decay $Npipi$ remains a challenge.
We present state-of-the-art results from a lattice QCD calculation of the nucleon axial coupling, $g_A$, using Mobius Domain-Wall fermions solved on the dynamical $N_f = 2 + 1 + 1$ HISQ ensembles after they are smeared using the gradient-flow algorit hm. Relevant three-point correlation functions are calculated using a method inspired by the Feynman-Hellmann theorem, and demonstrate significant improvement in signal for fixed stochastic samples. The calculation is performed at five pion masses of $m_pisim {400, 350, 310, 220, 130}$~MeV, three lattice spacings of $asim{0.15, 0.12, 0.09}$~fm, and we do a dedicated volume study with $m_pi Lsim{3.22, 4.29, 5.36}$. Control over all relevant sources of systematic uncertainty are demonstrated and quantified. We achieve a preliminary value of $g_A = 1.285(17)$, with a relative uncertainty of 1.33%.
216 - C. B. Lang , V. Verduci 2012
We study the coupled pion-nucleon system (negative parity, isospin 1/2) based on a lattice QCD simulation for nf=2 mass degenerate light quarks. Both, standard 3-quarks baryon operators as well as meson-baryon (4+1)-quark operators are included. This is an exploratory study for just one lattice size and lattice spacing and at a pion mass of 266 MeV. Using the distillation method and variational analysis we determine energy levels of the lowest eigenstates. Comparison with the results of simple 3-quark correlation studies exhibits drastic differences and a new level appears. A clearer picture of the negative parity nucleon spectrum emerges. For the parameters of the simulation we may assume elastic s-wave scattering and can derive values of the phase shift.
We determine the $Delta(1232)$ resonance parameters using lattice QCD and the Luscher method. The resonance occurs in elastic pion-nucleon scattering with $J^P=3/2^+$ in the isospin $I = 3/2$, $P$-wave channel. Our calculation is performed with $N_f= 2+1$ flavors of clover fermions on a lattice with $Lapprox 2.8$ fm. The pion and nucleon masses are $m_pi =255.4(1.6)$ MeV and $m_N=1073(5)$ MeV, and the strong decay channel $Delta rightarrow pi N$ is found to be above the threshold. To thoroughly map out the energy-dependence of the nucleon-pion scattering amplitude, we compute the spectra in all relevant irreducible representations of the lattice symmetry groups for total momenta up to $vec{P}=frac{2pi}{L}(1,1,1)$, including irreps that mix $S$ and $P$ waves. We perform global fits of the amplitude parameters to up to 21 energy levels, using a Breit-Wigner model for the $P$-wave phase shift and the effective-range expansion for the $S$-wave phase shift. From the location of the pole in the $P$-wave scattering amplitude, we obtain the resonance mass $m_Delta=1378(7)(9)$ MeV and the coupling $g_{Deltatext{-}pi N}=23.8(2.7)(0.9)$.
We report the first Lattice QCD calculation using the almost physical pion mass mpi=149 MeV that agrees with experiment for four fundamental isovector observables characterizing the gross structure of the nucleon: the Dirac and Pauli radii, the magne tic moment, and the quark momentum fraction. The key to this success is the combination of using a nearly physical pion mass and excluding the contributions of excited states. An analogous calculation of the nucleon axial charge governing beta decay has inconsistencies indicating a source of bias at low pion masses not present for the other observables and yields a result that disagrees with experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا