ﻻ يوجد ملخص باللغة العربية
We present results on the nucleon axial vector form factors $G_A(q^2)$ and $G_p(q^2)$ in the quenched theory and using two degenerate flavors of dynamical Wilson fermions for momentum transfer squared from about 0.1 to about 2 GeV^2 and for pion masses in the range of 380 to 600 MeV. We also present results on the corresponding N to Delta axial vector transition form factors $C_5^A(q^2)$ and $C_6^A(q^2)$ using, in addition to Wilson fermions, domain wall valence quarks and dynamical staggered sea quarks provided by the MILC collaboration.
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects a
We present preliminary results on the axial form factor $G_A(Q^2)$ and the induced pseudoscalar form factor $G_P(Q^2)$ of the nucleon. A systematic analysis of the excited-state contributions to form factors is performed on the CLS ensemble `N6 with
We evaluate the nucleon axial form factor, $G_A(q^2)$, and induced pseudoscalar form factor, $G_p(q^2)$, as well as the pion-nucleon form factor, $G_{pi N N}(q^2)$, in lattice QCD. We also evaluate the corresponding nucleon to $Delta$ transition form
We report a calculation of the nucleon axial form factors $G_A^q(Q^2)$ and $G_P^q(Q^2)$ for all three light quark flavors $qin{u,d,s}$ in the range $0leq Q^2lesssim 1.2text{ GeV}^2$ using lattice QCD. This work was done using a single ensemble with p
The electromagnetic nucleon to Delta transition form factors are evaluated using two degenerate flavors of dynamical Wilson fermions and using dynamical sea staggered fermions with domain wall valence quarks. The two subdominant quadrupole form facto