ﻻ يوجد ملخص باللغة العربية
We report a detailed study of the microscopic effects of Cu intercalation on the charge density wave (CDW) in 1textit{T}-Cu$_x$TiSe$_2$. Scanning tunneling microscopy and spectroscopy (STM/STS) reveal a unique, Cu driven spatial texturing of the charge ordered phase, with the appearance of energy dependent CDW patches and sharp $pi$-phase shift domain walls ($pi$DWs). The energy and doping dependencies of the patchwork are directly linked to the inhomogeneous potential landscape due to the Cu intercalants. They imply a CDW gap with unusual features, including a large amplitude, the opening below the Fermi level and a shift to higher binding energy with electron doping. Unlike the patchwork, the $pi$DWs occur independently of the intercalated Cu distribution. They remain atomically sharp throughout the investigated phase diagram and occur both in superconducting and non-superconducting specimen. These results provide unique atomic-scale insight on the CDW ground state, questioning the existence of incommensurate CDW domain walls and contributing to understand its formation mechanism and interplay with superconductivity.
We study the impact of Cu intercalation on the charge density wave (CDW) in 1T-Cu$_{text{x}}$TiSe$_{text{2}}$ by scanning tunneling microscopy and spectroscopy. Cu atoms, identified through density functional theory modeling, are found to intercalate
1T-TaS$_2$ undergoes successive phase transitions upon cooling and eventually enters an insulating state of mysterious origin. Some consider this state to be a band insulator with interlayer stacking order, yet others attribute it to Mott physics tha
The transition metal dichalcogenide (TMD) $1T$-TaS$_{2}$ exhibits a rich set of charge density wave (CDW) orders. Recent investigations suggested that using light or electric field can manipulate the commensurate (C) CDW ground state. Such manipulati
Charge order is universal among high-T$_c$ cuprates but its relevance to superconductivity is not established. It is widely believed that, while static order competes with superconductivity, dynamic order may be favorable and even contribute to Coope
The capability to isolate one to few unit-cell thin layers from the bulk matrix of layered compounds opens fascinating prospects to engineer novel electronic phases. However, a comprehensive study of the thickness dependence and of potential extrinsi