ﻻ يوجد ملخص باللغة العربية
The capability to isolate one to few unit-cell thin layers from the bulk matrix of layered compounds opens fascinating prospects to engineer novel electronic phases. However, a comprehensive study of the thickness dependence and of potential extrinsic effects are paramount to harness the electronic properties of such atomic foils. One striking example is the charge density wave (CDW) transition temperature in layered dichalcogenides whose thickness dependence remains unclear in the ultrathin limit. Here we present a detailed study of the thickness and temperature dependences of the CDW in VSe$_2$ by scanning tunnelling microscopy (STM). We show that mapping the real-space CDW periodicity over a broad thickness range unique to STM provides essential insight. We introduce a robust derivation of the local order parameter and transition temperature based on the real space charge modulation amplitude. Both quantities exhibit a striking non-monotonic thickness dependence that we explain in terms of a 3D to 2D dimensional crossover in the FS topology. This finding highlights thickness as a true tuning parameter of the electronic ground state and reconciles seemingly contradicting thickness dependencies determined in independent transport studies.
Metallization of 1T-TaS2 is generally initiated at the domain boundary of charge density wave (CDW), at the expense of its long-range order. However, we demonstrate in this study that the metallization of 1T-TaS2 can be also realized without breaking
How magnetism emerges in low-dimensional materials such as transition metal dichalcogenides at the monolayer limit is still an open question. Herein, we present a comprehensive study of the magnetic properties of single crystal and monolayer VSe$_{2}
We report a detailed study of the microscopic effects of Cu intercalation on the charge density wave (CDW) in 1textit{T}-Cu$_x$TiSe$_2$. Scanning tunneling microscopy and spectroscopy (STM/STS) reveal a unique, Cu driven spatial texturing of the char
Single layers of transition metal dichalcogenides (TMDCs) are excellent candidates for electronic applications beyond the graphene platform; many of them exhibit novel properties including charge density waves (CDWs) and magnetic ordering. CDWs in th
We have investigated the chiral charge-density wave (CDW) in $1T$-VSe$_2$ using scanning tunneling microscopy (STM) measurements and optical polarimetry measurements. With the STM mesurements, we revealed that the CDW intensities along each triple-$q