ترغب بنشر مسار تعليمي؟ اضغط هنا

Stripe and short range order in the charge density wave of 1T-Cu$_x$TiSe$_2$

79   0   0.0 ( 0 )
 نشر من قبل Marcello Spera
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the impact of Cu intercalation on the charge density wave (CDW) in 1T-Cu$_{text{x}}$TiSe$_{text{2}}$ by scanning tunneling microscopy and spectroscopy. Cu atoms, identified through density functional theory modeling, are found to intercalate randomly on the octahedral site in the van der Waals gap and to dope delocalized electrons near the Fermi level. While the CDW modulation period does not depend on Cu content, we observe the formation of charge stripe domains at low Cu content (x$<$0.02) and a breaking up of the commensurate order into 2$times$2 domains at higher Cu content. The latter shrink with increasing Cu concentration and tend to be phase-shifted. These findings invalidate a proposed excitonic pairing as the primary CDW formation mechanism in this material.



قيم البحث

اقرأ أيضاً

We report a detailed study of the microscopic effects of Cu intercalation on the charge density wave (CDW) in 1textit{T}-Cu$_x$TiSe$_2$. Scanning tunneling microscopy and spectroscopy (STM/STS) reveal a unique, Cu driven spatial texturing of the char ge ordered phase, with the appearance of energy dependent CDW patches and sharp $pi$-phase shift domain walls ($pi$DWs). The energy and doping dependencies of the patchwork are directly linked to the inhomogeneous potential landscape due to the Cu intercalants. They imply a CDW gap with unusual features, including a large amplitude, the opening below the Fermi level and a shift to higher binding energy with electron doping. Unlike the patchwork, the $pi$DWs occur independently of the intercalated Cu distribution. They remain atomically sharp throughout the investigated phase diagram and occur both in superconducting and non-superconducting specimen. These results provide unique atomic-scale insight on the CDW ground state, questioning the existence of incommensurate CDW domain walls and contributing to understand its formation mechanism and interplay with superconductivity.
In this study, using low-temperature scanning tunneling microscopy (STM), we focus on understanding the native defects in pristine textit{1T}-TiSe$_2$ at the atomic scale. We probe how they perturb the charge density waves (CDWs) and lead to local do main formation. These defects influence the correlation length of CDWs. We establish a connection between suppression of CDWs, Ti intercalation, and show how this supports the exciton condensation model of CDW formation in textit{1T}-TiSe$_2$.
In Ti-intercalated self-doped $1T$-TiSe$_2$ crystals, the charge density wave (CDW) superstructure induces two nonequivalent sites for Ti dopants. Recently, it has been shown that increasing Ti doping dramatically influences the CDW by breaking it in to phase-shifted domains. Here, we report scanning tunneling microscopy and spectroscopy experiments that reveal a dopant-site dependence of the CDW gap. Supported by density functional theory, we demonstrate that the loss of the longrange phase coherence introduces an imbalance in the intercalated-Ti site distribution and restrains the CDW gap closure. This local resilient behavior of the $1T$-TiSe$_2$ CDW reveals a novel mechanism between CDW and defects in mutual influence.
The impact of variable Ti self-doping on the 1T-TiSe2 charge density wave (CDW) is studied by scanning tunneling microscopy. Supported by density functional theory we show that agglomeration of intercalated-Ti atoms acts as preferential nucleation ce nters for the CDW that breaks up in phaseshifted CDW domains whose size directly depends on the intercalated-Ti concentration and which are separated by atomically-sharp phase boundaries. The close relationship between the diminution of the CDW domain size and the disappearance of the anomalous peak in the temperature dependent resistivity allows to draw a coherent picture of the 1T-TiSe2 CDW phase transition and its relation to excitons.
The transition metal dichalcogenide $1T$-TiSe$_2$ is a quasi-two-dimensional layered material with a phase transition towards a commensurate charge density wave (CDW) at a critical temperature T$_{c}approx 200$K. The relationship between the origin o f the CDW instability and the semimetallic or semiconducting character of the normal state, i.e., with the non-reconstructed Fermi surface topology, remains elusive. By combining angle-resolved photoemission spectroscopy (ARPES), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations, we investigate $1T$-TiSe$_{2-x}$S$_x$ single crystals. Using STM, we first show that the long-range phase coherent CDW state is stable against S substitutions with concentrations at least up to $x=0.34$. The ARPES measurements then reveal a slow but continuous decrease of the overlap between the electron and hole ($e$-$h$) bands of the semimetallic normal-state well reproduced by DFT and related to slight reductions of both the CDW order parameter and $T_c$. Our DFT calculations further predict a semimetal-to-semiconductor transition of the normal state at a higher critical S concentration of $x_c$=0.9 $pm$0.1, that coincides with a melted CDW state in TiSeS as measured with STM. Finally, we rationalize the $x$-dependence of the $e$-$h$ band overlap in terms of isovalent substitution-induced competing chemical pressure and charge localization effects. Our study highlights the key role of the $e$-$h$ band overlap for the CDW instability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا