ﻻ يوجد ملخص باللغة العربية
The success of a vaccination program is crucially dependent on its adoption by a critical fraction of the population, as the resulting herd immunity prevents future outbreaks of an epidemic. However, the effectiveness of a campaign can engender its own undoing if individuals choose to not get vaccinated in the belief that they are protected by herd immunity. Although this may appear to be an optimal decision, based on a rational appraisal of cost and benefits to the individual, it exposes the population to subsequent outbreaks. We investigate if voluntary vaccination can emerge in a an integrated model of an epidemic spreading on a social network of rational agents that make informed decisions whether to be vaccinated. The information available to each agent includes the prevalence of the disease in their local network neighborhood and/or globally in the population, as well as the fraction of their neighbors that are protected against the disease. Crucially, the payoffs governing the decision of agents evolve with disease prevalence, resulting in the co-evolution of vaccine uptake behavior with the spread of the contagion. The collective behavior of the agents responding to local prevalence can lead to a significant reduction in the final epidemic size, particularly for less contagious diseases having low basic reproduction number $R_0$. Near the epidemic threshold ($R_0approx1$) the use of local prevalence information can result in a dichotomous response in final vaccine coverage. The implications of our results suggest the nature of information used by individuals is a critical factor determining the success of public health intervention schemes that involve mass vaccination.
By incorporating delayed epidemic information and self-restricted travel behavior into the SIS model, we have investigated the coupled effects of timely and accurate epidemic information and peoples sensitivity to the epidemic information on contagio
We investigate the effect of degree correlation on a susceptible-infected-susceptible (SIS) model with a nonlinear cooperative effect (synergy) in infectious transmissions. In a mean-field treatment of the synergistic SIS model on a bimodal network w
In this work, we address a multicoupled dynamics on complex networks with tunable structural segregation. Specifically, we work on a networked epidemic spreading under a vaccination campaign with agents in favor and against the vaccine. Our results s
In the past few decades, the frequency of pandemics has been increased due to the growth of urbanization and mobility among countries. Since a disease spreading in one country could become a pandemic with a potential worldwide humanitarian and econom
We develop a generalized group-based epidemic model (GgroupEM) framework for any compartmental epidemic model (for example; susceptible-infected-susceptible, susceptible-infected-recovered, susceptible-exposed-infected-recovered). Here, a group consi