ﻻ يوجد ملخص باللغة العربية
By incorporating delayed epidemic information and self-restricted travel behavior into the SIS model, we have investigated the coupled effects of timely and accurate epidemic information and peoples sensitivity to the epidemic information on contagion. In the population with only local random movement, whether the epidemic information is delayed or not has no effect on the spread of the epidemic. Peoples high sensitivity to the epidemic information leads to their risk aversion behavior and the spread of the epidemic is suppressed. In the population with only global person-to-person movement, timely and accurate epidemic information helps an individual cut off the connections with the infected in time and the epidemic is brought under control in no time. A delay in the epidemic information leads to an individuals misjudgment of who has been infected and who has not, which in turn leads to rapid progress and a higher peak of the epidemic. In the population with coexistence of local and global movement, timely and accurate epidemic information and peoples high sensitivity to the epidemic information play an important role in curbing the epidemic. A theoretical analysis indicates that peoples misjudgment caused by the delayed epidemic information leads to a higher encounter probability between the susceptible and the infected and peoples self-restricted travel behavior helps reduce such an encounter probability. A functional relation between the ratio of infected individuals and the susceptible-infected encounter probability has been found.
Albeit epidemic models have evolved into powerful predictive tools for the spread of diseases and opinions, most assume memoryless agents and independent transmission channels. We develop an infection mechanism that is endowed with memory of past exp
Most models of epidemic spread, including many designed specifically for COVID-19, implicitly assume that social networks are undirected, i.e., that the infection is equally likely to spread in either direction whenever a contact occurs. In particula
The success of a vaccination program is crucially dependent on its adoption by a critical fraction of the population, as the resulting herd immunity prevents future outbreaks of an epidemic. However, the effectiveness of a campaign can engender its o
Contagion, broadly construed, refers to anything that can spread infectiously from peer to peer. Examples include communicable diseases, rumors, misinformation, ideas, innovations, bank failures, and electrical blackouts. Sometimes, as in the 1918 Sp
In this work, we address a multicoupled dynamics on complex networks with tunable structural segregation. Specifically, we work on a networked epidemic spreading under a vaccination campaign with agents in favor and against the vaccine. Our results s