ﻻ يوجد ملخص باللغة العربية
In this work, we address a multicoupled dynamics on complex networks with tunable structural segregation. Specifically, we work on a networked epidemic spreading under a vaccination campaign with agents in favor and against the vaccine. Our results show that such coupled dynamics exhibits a myriad of phenomena such as nonequilibrium transitions accompanied by bistability. Besides we observe the emergence of an intermediate optimal segregation level where the community structure enhances negative opinions over vaccination but counterintuitively hinders - rather than favoring - the global disease spreading. Thus, our results hint vaccination campaigns should avoid policies that end up segregating excessively anti-vaccine groups so that they effectively work as echo chambers in which individuals look to confirmation without jeopardising the safety of the whole population.
We investigate the effect of degree correlation on a susceptible-infected-susceptible (SIS) model with a nonlinear cooperative effect (synergy) in infectious transmissions. In a mean-field treatment of the synergistic SIS model on a bimodal network w
We study a multi-type SIR epidemic process among a heterogeneous population that interacts through a network. When we base social contact on a random graph with given vertex degrees, we give limit theorems on the fraction of infected individuals. For
In the past few decades, the frequency of pandemics has been increased due to the growth of urbanization and mobility among countries. Since a disease spreading in one country could become a pandemic with a potential worldwide humanitarian and econom
Power-law behaviors are common in many disciplines, especially in network science. Real-world networks, like disease spreading among people, are more likely to be interconnected communities, and show richer power-law behaviors than isolated networks.
We introduce a version of the Minority Game where the total number of available choices is $D>2$, but the agents only have two available choices to switch. For all agents at an instant in any given choice, therefore, the other choice is distributed b