ﻻ يوجد ملخص باللغة العربية
Silicon Photo-Multipliers (SiPM) are becoming the photo-detector of choice for increasingly more particle detection applications, from fundamental physics to medical and societal applications. One major consideration for their use at high-luminosity colliders is the radiation damage induced by hadrons, which leads to a dramatic increase of the dark count rate. KETEK SiPMs have been exposed to various fluences of reactor neutrons up to $Phi_{neq}$ = 5$times$10$^{14}$ cm$^{-2}$ (1 MeV equivalent neutrons). Results from the I-V, and C-V measurements for temperatures between $-$30$^circ$C and $+$30$^circ$C are presented. We propose a new method to quantify the effect of radiation damage on the SiPM performance. Using the measured dark current the single pixel occupation probability as a function of temperature and excess voltage is determined. From the pixel occupation probability the operating conditions for given requirements can be optimized. The method is qualitatively verified using current measurements with the SiPM illuminated by blue LED light.
Silicon photomultipliers (SiPM) are solid state light detectors with sensitivity to single photons. Their use in high energy physics experiments, and in particular in ring imaging Cherenkov (RICH) detectors, is hindered by their poor tolerance to rad
We report results from the testing of 35 {mu}m thick Ultra-Fast Silicon Detectors (UFSD produced by Hamamatsu Photonics (HPK), Japan and the comparison of these new results to data reported before on 50 {mu}m thick UFSD produced by HPK. The 35 {mu}m
Results obtained with 3D columnar pixel sensors bump-bonded to the RD53A prototype readout chip are reported. The interconnected modules have been tested in a hadron beam before and after irradiation to a fluence of about $1times$$10^{16}$neq cm$^{-2
The properties of 60-{mu}m thick Ultra-Fast Silicon Detectors (UFSD) detectors manufactured by Fondazione Bruno Kessler (FBK), Trento (Italy) were tested before and after irradiation with minimum ionizing particles (MIPs) from a 90Sr b{eta}-source .
This paper presents the possibility of using very thin Low Gain Avalanche Diodes (LGAD) ($25 - 50mu$m thick) as tracking detector at future hadron colliders, where particle fluence will be above $10^{16}; n_{eq}/cm^2$. In the present design, silicon