ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of 35 and 50 {mu}m thin HPK UFSD after neutron irradiation up to 6*10^15 neq/cm^2

68   0   0.0 ( 0 )
 نشر من قبل Hartmut Sadrozinski
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report results from the testing of 35 {mu}m thick Ultra-Fast Silicon Detectors (UFSD produced by Hamamatsu Photonics (HPK), Japan and the comparison of these new results to data reported before on 50 {mu}m thick UFSD produced by HPK. The 35 {mu}m thick sensors were irradiated with neutrons to fluences of 0, 1*10^14, 1*10^15, 3*10^15, 6*10^15 neq/cm^2. The sensors were tested pre-irradiation and post-irradiation with minimum ionizing particles (MIPs) from a 90Sr b{eta}-source. The leakage current, capacitance, internal gain and the timing resolution were measured as a function of bias voltage at -20C and -27C. The timing resolution was extracted from the time difference with a second calibrated UFSD in coincidence, using the constant fraction method for both. Within the fluence range measured, the advantage of the 35 {mu}m thick UFSD in timing accuracy, bias voltage and power can be established.

قيم البحث

اقرأ أيضاً

Low Gain Avalanche Detectors (LGADs) are silicon sensors with a built-in charge multiplication layer providing a gain of typically 10 to 50. Due to the combination of high signal-to-noise ratio and short rise time, thin LGADs provide good time resolu tions. LGADs with an active thickness of about 45 $mu$m were produced at CNM Barcelona. Their gains and time resolutions were studied in beam tests for two different multiplication layer implantation doses, as well as before and after irradiation with neutrons up to $10^{15}$ n$_{eq}$/cm$^2$. The gain showed the expected decrease at a fixed voltage for a lower initial implantation dose, as well as for a higher fluence due to effective acceptor removal in the multiplication layer. Time resolutions below 30 ps were obtained at the highest applied voltages for both implantation doses before irradiation. Also after an intermediate fluence of $3times10^{14}$ n$_{eq}$/cm$^2$, similar values were measured since a higher applicable reverse bias voltage could recover most of the pre-irradiation gain. At $10^{15}$ n$_{eq}$/cm$^2$, the time resolution at the maximum applicable voltage of 620 V during the beam test was measured to be 57 ps since the voltage stability was not good enough to compensate for the gain layer loss. The time resolutions were found to follow approximately a universal function of gain for all implantation doses and fluences.
The properties of 60-{mu}m thick Ultra-Fast Silicon Detectors (UFSD) detectors manufactured by Fondazione Bruno Kessler (FBK), Trento (Italy) were tested before and after irradiation with minimum ionizing particles (MIPs) from a 90Sr b{eta}-source . This FBK production, called UFSD2, has UFSDs with gain layer made of Boron, Boron low-diffusion, Gallium, Carbonated Boron and Carbonated. The irradiation with neutrons took place at the TRIGA reactor in Ljubljana, while the proton irradiation took place at CERN SPS. The sensors were exposed to a neutron fluence of 4*10e14, 8*1014, 1.5*10e15, 3*10e15, 6*10e15 neq/cm2 and to a proton fluence of 9.6*10e14 p/cm2, equivalent to a fluence of 6*10e14 neq/cm2. The internal gain and the timing resolution were measured as a function of bias voltage at -20C. The timing resolution was extracted from the time difference with a second calibrated UFSD in coincidence, using the constant fraction method for both.
Silicon Photo-Multipliers (SiPM) are becoming the photo-detector of choice for increasingly more particle detection applications, from fundamental physics to medical and societal applications. One major consideration for their use at high-luminosity colliders is the radiation damage induced by hadrons, which leads to a dramatic increase of the dark count rate. KETEK SiPMs have been exposed to various fluences of reactor neutrons up to $Phi_{neq}$ = 5$times$10$^{14}$ cm$^{-2}$ (1 MeV equivalent neutrons). Results from the I-V, and C-V measurements for temperatures between $-$30$^circ$C and $+$30$^circ$C are presented. We propose a new method to quantify the effect of radiation damage on the SiPM performance. Using the measured dark current the single pixel occupation probability as a function of temperature and excess voltage is determined. From the pixel occupation probability the operating conditions for given requirements can be optimized. The method is qualitatively verified using current measurements with the SiPM illuminated by blue LED light.
Results obtained with 3D columnar pixel sensors bump-bonded to the RD53A prototype readout chip are reported. The interconnected modules have been tested in a hadron beam before and after irradiation to a fluence of about $1times$$10^{16}$neq cm$^{-2 }$ (1MeV equivalent neutrons). All presented results are part of the CMS R&D activities in view of the pixel detector upgrade for the High Luminosity phase of the LHC at CERN (HL-LHC). A preliminary analysis of the collected data shows hit detection efficiencies around 97% measured after proton irradiation.
We present the results of the characterization of novel n-in-p planar pixel detectors, designed for the future upgrades of the ATLAS pixel system. N-in-p silicon devices are a promising candidate to replace the n-in-n sensors thanks to their radiatio n hardness and cost effectiveness, that allow for enlarging the area instrumented with pixel detectors. The n-in-p modules presented here are composed of pixel sensors produced by CiS connected by bump-bonding to the ATLAS readout chip FE-I3. The characterization of these devices has been performed with the ATLAS pixel read-out systems, TurboDAQ and USBPIX, before and after irradiation with 25 MeV protons and neutrons up to a fluence of 5x10**15 neq /cm2. The charge collection measurements carried out with radioactive sources have proven the feasibility of employing this kind of detectors up to these particle fluences. The collected charge has been measured to be for any fluence in excess of twice the value of the FE-I3 threshold, tuned to 3200 e. The first results from beam test data with 120 GeV pions at the CERN-SPS are also presented, demonstrating a high tracking efficiency before irradiation and a high collected charge for a device irradiated at 10**15 neq /cm2. This work has been performed within the framework of the RD50 Collaboration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا