ﻻ يوجد ملخص باللغة العربية
The characterization of various properties of real-world systems requires the knowledge of the underlying network of connections among the systems components. Unfortunately, in many situations the complete topology of this network is empirically inaccessible, and one has to resort to probabilistic techniques to infer it from limited information. While network reconstruction methods have reached some degree of maturity in the case of single-layer networks (where nodes can be connected only by one type of links), the problem is practically unexplored in the case of multiplex networks, where several interdependent layers, each with a different type of links, coexist. Even the most advanced network reconstruction techniques, if applied to each layer separately, fail in replicating the observed inter-layer dependencies making up the whole coupled multiplex. Here we develop a methodology to reconstruct a class of correlated multiplexes which includes the World Trade Multiplex as a specific example we study in detail. Our method starts from any reconstruction model that successfully reproduces some desired marginal properties, including node strengths and/or node degrees, of each layer separately. It then introduces the minimal dependency structure required to replicate an additional set of higher-order properties that quantify the portion of each nodes degree and each nodes strength that is shared and/or reciprocated across pairs of layers. These properties are found to provide empirically robust measures of inter-layer coupling. Our method allows joint multi-layer connection probabilities to be reliably reconstructed from marginal ones, effectively bridging the gap between single-layer properties and truly multiplex information.
Many natural, engineered, and social systems can be represented using the framework of a layered network, where each layer captures a different type of interaction between the same set of nodes. The study of such multiplex networks is a vibrant area
Nodes in a complex networked system often engage in more than one type of interactions among them; they form a multiplex network with multiple types of links. In real-world complex systems, a nodes degree for one type of links and that for the other
Internet communication channels, e.g., Facebook, Twitter, and email, are multiplex networks that facilitate interaction and information-sharing among individuals. During brief time periods users often use a single communication channel, but then comm
Network reconstruction is fundamental to understanding the dynamical behaviors of the networked systems. Many systems, modeled by multiplex networks with various types of interactions, display an entirely different dynamical behavior compared to the
Multiplex networks are convenient mathematical representations for many real-world -- biological, social, and technological -- systems of interacting elements, where pairwise interactions among elements have different flavors. Previous studies pointe