ترغب بنشر مسار تعليمي؟ اضغط هنا

Social contagions with communication channels alternation on multiplex networks

100   0   0.0 ( 0 )
 نشر من قبل Wei Wang
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

Internet communication channels, e.g., Facebook, Twitter, and email, are multiplex networks that facilitate interaction and information-sharing among individuals. During brief time periods users often use a single communication channel, but then communication channel alteration (CCA) occurs. This means that we must refine our understanding of the dynamics of social contagions. We propose a non-Markovian behavior spreading model in multiplex networks that takes into account the CCA mechanism, and we develop a generalized edge-based compartmental method to describe the spreading dynamics. Through extensive numerical simulations and theoretical analyses we find that the time delays induced by CCA slow the behavior spreading but do not affect the final adoption size. We also find that the CCA suppresses behavior spreading. On two coupled random regular networks, the adoption size exhibits hybrid growth, i.e., it grows first continuously and then discontinuously with the information transmission probability. CCA in ER-SF multiplex networks in which two subnetworks are ErdH{o}s-R{e}nyi (ER) and scale-free (SF) introduces a crossover from continuous to hybrid growth in adoption size versus information transmission probability. Our results extend our understanding of the role of CCA in spreading dynamics, and may elicit further research.



قيم البحث

اقرأ أيضاً

We investigate critical behaviors of a social contagion model on weighted networks. An edge-weight compartmental approach is applied to analyze the weighted social contagion on strongly heterogenous networks with skewed degree and weight distribution s. We find that degree heterogeneity can not only alter the nature of contagion transition from discontinuous to continuous but also can enhance or hamper the size of adoption, depending on the unit transmission probability. We also show that, the heterogeneity of weight distribution always hinder social contagions, and does not alter the transition type.
Multi-layered networks represent a major advance in the description of natural complex systems, and their study has shed light on new physical phenomena. Despite its importance, however, the role of the temporal dimension in their structure and funct ion has not been investigated in much detail so far. Here we study the temporal correlations between layers exhibited by real social multiplex networks. At a basic level, the presence of such correlations implies a certain degree of predictability in the contact pattern, as we quantify by an extension of the entropy and mutual information analyses proposed for the single-layer case. At a different level, we demonstrate that temporal correlations are a signature of a multitasking behavior of network agents, characterized by a higher level of switching between different social activities than expected in a uncorrelated pattern. Moreover, temporal correlations significantly affect the dynamics of coupled epidemic processes unfolding on the network. Our work opens the way for the systematic study of temporal multiplex networks and we anticipate it will be of interest to researchers in a broad array of fields.
Individuals are always limited by some inelastic resources, such as time and energy, which restrict them to dedicate to social interaction and limit their contact capacity. Contact capacity plays an important role in dynamics of social contagions, wh ich so far has eluded theoretical analysis. In this paper, we first propose a non-Markovian model to understand the effects of contact capacity on social contagions, in which each individual can only contact and transmit the information to a finite number of neighbors. We then develop a heterogeneous edge-based compartmental theory for this model, and a remarkable agreement with simulations is obtained. Through theory and simulations, we find that enlarging the contact capacity makes the network more fragile to behavior spreading. Interestingly, we find that both the continuous and discontinuous dependence of the final adoption size on the information transmission probability can arise. And there is a crossover phenomenon between the two types of dependence. More specifically, the crossover phenomenon can be induced by enlarging the contact capacity only when the degree exponent is above a critical degree exponent, while the the final behavior adoption size always grows continuously for any contact capacity when degree exponent is below the critical degree exponent.
Online social network (OSN) applications provide different experiences; for example, posting a short text on Twitter and sharing photographs on Instagram. Multiple OSNs constitute a multiplex network. For privacy protection and usage purposes, accoun ts belonging to the same user in different OSNs may have different usernames, photographs, and introductions. Interlayer link prediction in multiplex network aims at identifying whether the accounts in different OSNs belong to the same person, which can aid in tasks including cybercriminal behavior modeling and customer interest analysis. Many real-world OSNs exhibit a scale-free degree distribution; thus, neighbors with different degrees may exert different influences on the node matching degrees across different OSNs. We developed an iterative degree penalty (IDP) algorithm for interlayer link prediction in the multiplex network. First, we proposed a degree penalty principle that assigns a greater weight to a common matched neighbor with fewer connections. Second, we applied node adjacency matrix multiplication for efficiently obtaining the matching degree of all unmatched node pairs. Thereafter, we used the approved maximum value method to obtain the interlayer link prediction results from the matching degree matrix. Finally, the prediction results were inserted into the priori interlayer node pair set and the above processes were performed iteratively until all unmatched nodes in one layer were matched or all matching degrees of the unmatched node pairs were equal to 0. Experiments demonstrated that our advanced IDP algorithm significantly outperforms current network structure-based methods when the multiplex network average degree and node overlapping rate are low.
Recent approaches on elite identification highlighted the important role of {em intermediaries}, by means of a new definition of the core of a multiplex network, the {em generalised} $K$-core. This newly introduced core subgraph crucially incorporate s those individuals who, in spite of not being very connected, maintain the cohesiveness and plasticity of the core. Interestingly, it has been shown that the performance on elite identification of the generalised $K$-core is sensibly better that the standard $K$-core. Here we go further: Over a multiplex social system, we isolate the community structure of the generalised $K$-core and we identify the weakly connected regions acting as bridges between core communities, ensuring the cohesiveness and connectivity of the core region. This gluing region is the {em Weak core} of the multiplex system. We test the suitability of our method on data from the society of 420.000 players of the Massive Multiplayer Online Game {em Pardus}. Results show that the generalised $K$-core displays a clearly identifiable community structure and that the weak core gluing the core communities shows very low connectivity and clustering. Nonetheless, despite its low connectivity, the weak core forms a unique, cohesive structure. In addition, we find that members populating the weak core have the best scores on social performance, when compared to the other elements of the generalised $K$-core. The weak core provides a new angle on understanding the social structure of elites, highlighting those subgroups of individuals whose role is to glue different communities in the core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا