ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlated structural evolution within multiplex networks

66   0   0.0 ( 0 )
 نشر من قبل Haochen Wu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Many natural, engineered, and social systems can be represented using the framework of a layered network, where each layer captures a different type of interaction between the same set of nodes. The study of such multiplex networks is a vibrant area of research. Yet, understanding how to quantify the correlations present between pairs of layers, and more so present in their co-evolution, is lacking. Such methods would enable us to address fundamental questions involving issues such as function, redundancy and potential disruptions. Here we show first how the edge-set of a multiplex network can be used to construct an estimator of a joint probability distribution describing edge existence over all layers. We then adapt an information-theoretic measure of general correlation called the conditional mutual information, which uses the estimated joint probability distribution, to quantify the pairwise correlations present between layers. The pairwise comparisons can also be temporal, allowing us to identify if knowledge of a certain layer can provide additional information about the evolution of another layer. We analyze datasets from three distinct domains---economic, political, and airline networks---to demonstrate how pairwise correlation in structure and dynamical evolution between layers can be identified and show that anomalies can serve as potential indicators of major events such as shocks.



قيم البحث

اقرأ أيضاً

The characterization of various properties of real-world systems requires the knowledge of the underlying network of connections among the systems components. Unfortunately, in many situations the complete topology of this network is empirically inac cessible, and one has to resort to probabilistic techniques to infer it from limited information. While network reconstruction methods have reached some degree of maturity in the case of single-layer networks (where nodes can be connected only by one type of links), the problem is practically unexplored in the case of multiplex networks, where several interdependent layers, each with a different type of links, coexist. Even the most advanced network reconstruction techniques, if applied to each layer separately, fail in replicating the observed inter-layer dependencies making up the whole coupled multiplex. Here we develop a methodology to reconstruct a class of correlated multiplexes which includes the World Trade Multiplex as a specific example we study in detail. Our method starts from any reconstruction model that successfully reproduces some desired marginal properties, including node strengths and/or node degrees, of each layer separately. It then introduces the minimal dependency structure required to replicate an additional set of higher-order properties that quantify the portion of each nodes degree and each nodes strength that is shared and/or reciprocated across pairs of layers. These properties are found to provide empirically robust measures of inter-layer coupling. Our method allows joint multi-layer connection probabilities to be reliably reconstructed from marginal ones, effectively bridging the gap between single-layer properties and truly multiplex information.
Nodes in a complex networked system often engage in more than one type of interactions among them; they form a multiplex network with multiple types of links. In real-world complex systems, a nodes degree for one type of links and that for the other are not randomly distributed but correlated, which we term correlated multiplexity. In this paper we study a simple model of multiplex random networks and demonstrate that the correlated multiplexity can drastically affect the properties of giant component in the network. Specifically, when the degrees of a node for different interactions in a duplex Erdos-Renyi network are maximally correlated, the network contains the giant component for any nonzero link densities. In contrast, when the degrees of a node are maximally anti-correlated, the emergence of giant component is significantly delayed, yet the entire network becomes connected into a single component at a finite link density. We also discuss the mixing patterns and the cases with imperfect correlated multiplexity.
Multiplex networks are convenient mathematical representations for many real-world -- biological, social, and technological -- systems of interacting elements, where pairwise interactions among elements have different flavors. Previous studies pointe d out that real-world multiplex networks display significant inter-layer correlations -- degree-degree correlation, edge overlap, node similarities -- able to make them robust against random and targeted failures of their individual components. Here, we show that inter-layer correlations are important also in the characterization of their $mathbf{k}$-core structure, namely the organization in shells of nodes with increasingly high degree. Understanding $k$-core structures is important in the study of spreading processes taking place on networks, as for example in the identification of influential spreaders and the emergence of localization phenomena. We find that, if the degree distribution of the network is heterogeneous, then a strong $mathbf{k}$-core structure is well predicted by significantly positive degree-degree correlations. However, if the network degree distribution is homogeneous, then strong $mathbf{k}$-core structure is due to positive correlations at the level of node similarities. We reach our conclusions by analyzing different real-world multiplex networks, introducing novel techniques for controlling inter-layer correlations of networks without changing their structure, and taking advantage of synthetic network models with tunable levels of inter-layer correlations.
Real networks often form interacting parts of larger and more complex systems. Examples can be found in different domains, ranging from the Internet to structural and functional brain networks. Here, we show that these multiplex systems are not rando m combinations of single network layers. Instead, they are organized in specific ways dictated by hidden geometric correlations between the individual layers. We find that these correlations are strong in different real multiplexes, and form a key framework for answering many important questions. Specifically, we show that these geometric correlations facilitate: (i) the definition and detection of multidimensional communities, which are sets of nodes that are simultaneously similar in multiple layers; (ii) accurate trans-layer link prediction, where connections in one layer can be predicted by observing the hidden geometric space of another layer; and (iii) efficient targeted navigation in the multilayer system using only local knowledge, which outperforms navigation in the single layers only if the geometric correlations are sufficiently strong. Our findings uncover fundamental organizing principles behind real multiplexes and can have important applications in diverse domains.
Social interactions are stratified in multiple contexts and are subject to complex temporal dynamics. The systematic study of these two features of social systems has started only very recently mainly thanks to the development of multiplex and time-v arying networks. However, these two advancements have progressed almost in parallel with very little overlap. Thus, the interplay between multiplexity and the temporal nature of connectivity patterns is poorly understood. Here, we aim to tackle this limitation by introducing a time-varying model of multiplex networks. We are interested in characterizing how these two properties affect contagion processes. To this end, we study SIS epidemic models unfolding at comparable time-scale respect to the evolution of the multiplex network. We study both analytically and numerically the epidemic threshold as a function of the overlap between, and the features of, each layer. We found that, the overlap between layers significantly reduces the epidemic threshold especially when the temporal activation patterns of overlapping nodes are positively correlated. Furthermore, when the average connectivity across layers is very different, the contagion dynamics are driven by the features of the more densely connected layer. Here, the epidemic threshold is equivalent to that of a single layered graph and the impact of the disease, in the layer driving the contagion, is independent of the overlap. However, this is not the case in the other layers where the spreading dynamics are sharply influenced by it. The results presented provide another step towards the characterization of the properties of real networks and their effects on contagion phenomena
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا