ﻻ يوجد ملخص باللغة العربية
Multiplex networks are convenient mathematical representations for many real-world -- biological, social, and technological -- systems of interacting elements, where pairwise interactions among elements have different flavors. Previous studies pointed out that real-world multiplex networks display significant inter-layer correlations -- degree-degree correlation, edge overlap, node similarities -- able to make them robust against random and targeted failures of their individual components. Here, we show that inter-layer correlations are important also in the characterization of their $mathbf{k}$-core structure, namely the organization in shells of nodes with increasingly high degree. Understanding $k$-core structures is important in the study of spreading processes taking place on networks, as for example in the identification of influential spreaders and the emergence of localization phenomena. We find that, if the degree distribution of the network is heterogeneous, then a strong $mathbf{k}$-core structure is well predicted by significantly positive degree-degree correlations. However, if the network degree distribution is homogeneous, then strong $mathbf{k}$-core structure is due to positive correlations at the level of node similarities. We reach our conclusions by analyzing different real-world multiplex networks, introducing novel techniques for controlling inter-layer correlations of networks without changing their structure, and taking advantage of synthetic network models with tunable levels of inter-layer correlations.
Recent approaches on elite identification highlighted the important role of {em intermediaries}, by means of a new definition of the core of a multiplex network, the {em generalised} $K$-core. This newly introduced core subgraph crucially incorporate
Real networks often form interacting parts of larger and more complex systems. Examples can be found in different domains, ranging from the Internet to structural and functional brain networks. Here, we show that these multiplex systems are not rando
The organisation of a network in a maximal set of nodes having at least $k$ neighbours within the set, known as $k$-core decomposition, has been used for studying various phenomena. It has been shown that nodes in the innermost $k$-shells play a cruc
Many real-world networks are coupled together to maintain their normal functions. Here we study the robustness of multiplex networks with interdependent and interconnected links under k-core percolation, where a node fails when it connects to a thres
The characterization of various properties of real-world systems requires the knowledge of the underlying network of connections among the systems components. Unfortunately, in many situations the complete topology of this network is empirically inac