ﻻ يوجد ملخص باللغة العربية
We study the index of the APS boundary value problem for a strongly Callias-type operator $D$ on a complete even dimensional Riemannian manifold $M$ (the odd dimensional case was considered in our previous paper arXiv:1706.06737). We use this index to define the relative $eta$-invariant $eta(A_1,A_0)$ of two strongly Callias-type operators, which are equal outside of a compact set. Even though in our situation the $eta$-invariants of $A_1$ and $A_0$ are not defined, the relative $eta$-invariant behaves as if it were the difference $eta(A_1)-eta(A_0)$. We also define the spectral flow of a family of such operators and use it compute the variation of the relative $eta$-invariant.
We study the index of the APS boundary value problem for a strongly Callias-type operator D on a complete Riemannian manifold $M$. We show that this index is equal to an index on a simpler manifold whose boundary is a disjoint union of two complete m
We consider a hyperbolic Dirac-type operator with growing potential on a a spatially non-compact globally hyperbolic manifold. We show that the Atiyah-Patodi-Singer boundary value problem for such operator is Fredholm and obtain a formula for this in
We consider a generalized APS boundary problem for a G-invariant Dirac-type operator, which is not of product type near the boundary. We establish a delocalized version (a so-called Kirillov formula) of the equivariant index theorem for this operator
We consider the Dirac operator on asymptotically static Lorentzian manifolds with an odd-dimensional compact Cauchy surface. We prove that if Atiyah-Patodi-Singer boundary conditions are imposed at infinite times then the Dirac operator is Fredholm.
We construct a regularized index of a generalized Dirac operator on a complete Riemannian manifold endowed with a proper action of a unimodular Lie group. We show that the index is preserved by a certain class of non-compact cobordisms and prove a gl