ترغب بنشر مسار تعليمي؟ اضغط هنا

The index theory on non-compact manifolds with proper group action

431   0   0.0 ( 0 )
 نشر من قبل Maxim Braverman
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Maxim Braverman




اسأل ChatGPT حول البحث

We construct a regularized index of a generalized Dirac operator on a complete Riemannian manifold endowed with a proper action of a unimodular Lie group. We show that the index is preserved by a certain class of non-compact cobordisms and prove a gluing formula for the regularized index. The results of this paper generalize our previous construction of index for compact group action and the recent paper of Mathai and Hochs who studied the case of a Hamiltonian action on a symplectic manifold. As an application of the cobordism invariance of the index we give an affirmative answer to a question of Mathai and Hochs about the independence of the Mathai-Hochs quantization of the metric, connection and other choices.



قيم البحث

اقرأ أيضاً

We study the index of the APS boundary value problem for a strongly Callias-type operator D on a complete Riemannian manifold $M$. We show that this index is equal to an index on a simpler manifold whose boundary is a disjoint union of two complete m anifolds $N_0$ and $N_1$. If the dimension of $M$ is odd we show that the latter index depends only on the restrictions $A_0$ and $A_1$ of $D$ to $N_0$ and $N_1$ and thus is an invariant of the boundary. We use this invariant to define the relative eta-invariant $eta(A_1,A_0)$. We show that even though in our situation the eta-invariants of $A_1$ and $A_0$ are not defined, the relative eta-invariant behaves as if it was the difference $eta(A_1)-eta(A_0)$.
92 - Maxim Braverman 2018
We consider a hyperbolic Dirac-type operator with growing potential on a a spatially non-compact globally hyperbolic manifold. We show that the Atiyah-Patodi-Singer boundary value problem for such operator is Fredholm and obtain a formula for this in dex in terms of the local integrals and the relative eta-invariant introduced by Braverman and Shi. This extends recent results of Bar and Strohmaier, who studied the index of a hyperbolic Dirac operator on a spatially compact globally hyperbolic manifold.
We study the index of the APS boundary value problem for a strongly Callias-type operator $D$ on a complete even dimensional Riemannian manifold $M$ (the odd dimensional case was considered in our previous paper arXiv:1706.06737). We use this index t o define the relative $eta$-invariant $eta(A_1,A_0)$ of two strongly Callias-type operators, which are equal outside of a compact set. Even though in our situation the $eta$-invariants of $A_1$ and $A_0$ are not defined, the relative $eta$-invariant behaves as if it were the difference $eta(A_1)-eta(A_0)$. We also define the spectral flow of a family of such operators and use it compute the variation of the relative $eta$-invariant.
69 - Pengshuai Shi 2018
We study the Cauchy data spaces of the strongly Callias-type operators using maximal domain on manifolds with non-compact boundary, with the aim of understanding the Atiyah-Patodi-Singer index and elliptic boundary value problems.
We show that, on a complete and possibly non-compact Riemannian manifold of dimension at least 2 without close conjugate points at infinity, the existence of a closed geodesic with local homology in maximal degree and maximal index growth under itera tion forces the existence of infinitely many closed geodesics. For closed manifolds, this was a theorem due to Hingston.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا